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Introduction and Objectives 

Joint moments and joint powers 

during gait are widely used to determine the 

effects of rehabilitation programs as well as 

prosthetic fitting. Following the definition of 

power (dot product of joint moment and 

joint angular velocity) it has been previously 

proposed to analyse the 3D angle between 

both vectors, αMw. 
[1]

 

Basically, joint power is maximised 

when both vectors are parallel and cancelled 

when both vectors are orthogonal. 

In other words, αMw < 60° reveals a 

propulsion configuration (more than 50% of 

the moment contribute to positive power) 

while αMw > 120° reveals a resistance 

configuration (more than 50% of the 

moment contribute to negative power). 

A stabilisation configuration (less 

than 50% of the moment contribute to 

power) corresponds to 60° < αMw < 120°. 

Previous studies demonstrated that 

hip joints of able-bodied adults (AB) are 

mainly in a stabilisation configuration (αMw 

about 90°) during the stance phase of gait. 
[1, 

2]
 Individuals with transfemoral amputation 

(TFA) need to maximise joint power at the 

hip while controlling the prosthetic knee 

during stance. 

Therefore, we tested the hypothesis 

that TFAs should adopt a strategy that is 

different from a continuous stabilisation. 

The objective of this study was to 

compute joint power and αMw for TFA and 

to compare them with AB. 

 

Methods 

Three trials of walking at self-

selected speed were analysed for 8 TFAs (7 

males and 1 female, 46±10 years old, 

1.78±0.08 m 82±13 kg) and 8 ABs (males, 

25±3 years old, 1.75±0.04, m 67±6 kg). The 

joint moments are computed from a motion 

analysis system (Qualisys, Goteborg, 

Sweden) and a multi-axial transducer (JR3, 

Woodland, USA) mounted above the 

prosthetic knee 
[3-17]

 for TFAs and from a 

motion analysis system (Motion Analysis, 

Santa Rosa, USA) and force plates (Bertec, 

Columbus, USA) for ABs. The TFAs were 

fitted with an OPRA (Integrum, AB, 

Gothengurg, Sweden) osseointegrated 

implant system and their prosthetic designs 

include pneumatic, hydraulic and 
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microprocessor knees.
[8, 14, 18-23]

 Previous 

studies showed that the inverse dynamics 

computed from the multi-axial transducer is 

the proper method considering the 

absorption at the foot and resistance at the 

knee.
[7]

 

 

Results 
 The peak of positive power at 

loading response (H1) was earlier and lower 

for TFA compared to AB. Although the 

joint power is lower, the 3D angle between 

joint moment and joint angular velocity, 

αMw, reveals an obvious propulsion 

configuration (mean αMw about 20°) for 

TFA compared to a stabilisation 

configuration (mean αMw about 70°) for 

AB. 

 

Figure 1: Dimensionless hip joint power 

(m is the body mass, g is 9.81 m/s2 and L is 

length length) and 3D angle between joint 

moment and joint angular velocity: Red 

and blue lines and areas are means 

standard deviations for individuals with 

transfemoral amputation (TFA) and able-

bodied adults (AB), respectively. 

 
 

The peaks of negative power at 

midstance (H2) and of positive power at 

preswing / initial swing (H3) occurred later, 

lower and longer for TFA compared to AB. 

Again, the joint powers are lower for TFA 

but, in this case, αMw is almost comparable 

(with a time lag), demonstrating a 

stabilisation (almost a resistance for TFA, 

mean αMw about 120°) and a propulsion 

configuration, respectively. The swing phase 

is not analysed in the present study. 

Conclusion 
 The analysis of hip joint power may 

indicate that TFAs demonstrated less 

propulsion and resistance than ABs during 

the stance phase of gait. This is true from a 

quantitative point of view. On the contrary, 

the 3D angle between joint moment and 

joint angular velocity, αMw, reveals that 

TFAs have a remarkable propulsion strategy 

at loading response and almost a resistance 

strategy at midstance while ABs adopted a 

stabilisation strategy. 

The propulsion configuration, with 

αMw close to 0°, seems to aim at 

maximising the positive joint power. The 

configuration close to resistance, with αMw 

far from 180°, might aim at unlocking the 

prosthetic knee before swing while 

minimising the negative power. 

This analysis of both joint power and 

3D angle between the joint moment and the 

joint angular velocity provides 

complementary insights into the gait 

strategies of TFA that can be used to support 

evidence-based rehabilitation and fitting of 

prosthetic components. 
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