Journal article
Predicting global habitat suitability for stony corals on seamounts
Journal of Biogeography, Vol.36(6), pp.1111-1128
2009
Abstract
Aim Globally, species distribution patterns in the deep sea are poorly resolved, with spatial coverage being sparse for most taxa and true absence data missing. Increasing human impacts on deep-sea ecosystems mean that reaching a better understanding of such patterns is becoming more urgent. Cold-water stony corals (Order Scleractinia) form structurally complex habitats (dense thickets or reefs) that can support a diversity of other associated fauna. Despite their widely accepted ecological importance, records of scleractinian corals on seamounts are patchy and simply not available for most of the global ocean. The objective of this paper is to model the global distribution of suitable habitat for stony corals on seamounts. Location Seamounts worldwide. Methods We compiled a database containing all accessible records of scleractinian corals on seamounts. Two modelling approaches developed for presence-only data were used to predict global habitat suitability for seamount scleractinians: maximum entropy modelling (Maxent) and environmental niche factor analysis (ENFA). We generated habitat-suitability maps and used a cross-validation process with a threshold-independent metric to evaluate the performance of the models. Results Both models performed well in cross-validation, although the Maxent method consistently outperformed ENFA. Highly suitable habitat for seamount stony corals was predicted to occur at most modelled depths in the North Atlantic, and in a circumglobal strip in the Southern Hemisphere between 20° and 50° S and shallower than around 1500 m. Seamount summits in most other regions appeared much less likely to provide suitable habitat, except for small near-surface patches. The patterns of habitat suitability largely reflect current biogeographical knowledge. Environmental variables positively associated with high predicted habitat suitability included the aragonite saturation state, and oxygen saturation and concentration. By contrast, low levels of dissolved inorganic carbon, nitrate, phosphate and silicate were associated with high predicted suitability. High correlation among variables made assessing individual drivers difficult. Main conclusions Our models predict environmental conditions likely to play a role in determining large-scale scleractinian coral distributions on seamounts, and provide a baseline scenario on a global scale. These results present a first-order hypothesis that can be tested by further sampling. Given the high vulnerability of cold-water corals to human impacts, such predictions are crucial tools in developing worldwide conservation and management strategies for seamount ecosystems.
Details
- Title
- Predicting global habitat suitability for stony corals on seamounts
- Authors
- D P Tittensor (Author) - Dalhousie University, CanadaA R Baco (Author) - Florida State University, United StatesP E Brewin (Author) - University of California San Diego, United StatesM R Clark (Author) - National Institute of Water and Atmospheric Research, New ZealandM Consalvey (Author) - National Institute of Water and Atmospheric Research, New ZealandJ M Hall-Spencer (Author) - University of Plymouth, United KingdomA A Rowden (Author) - National Institute of Water and Atmospheric Research, New ZealandThomas Schlacher (Author) - University of the Sunshine Coast - Faculty of Science, Health and EducationK I Stocks (Author) - University of California San Diego, United StatesA D Rogers (Author) - Zoological Society of London, United Kingdom
- Publication details
- Journal of Biogeography, Vol.36(6), pp.1111-1128
- Publisher
- Wiley-Blackwell Publishing Ltd.
- Date published
- 2009
- DOI
- 10.1111/j.1365-2699.2008.02062.x
- ISSN
- 0305-0270; 0305-0270
- Organisation Unit
- School of Science and Engineering - Legacy; University of the Sunshine Coast, Queensland; School of Science, Technology and Engineering
- Language
- English
- Record Identifier
- 99449539502621
- Output Type
- Journal article
Metrics
6 File views/ downloads
1076 Record Views
InCites Highlights
These are selected metrics from InCites Benchmarking & Analytics tool, related to this output
- Collaboration types
- Domestic collaboration
- International collaboration
- Web Of Science research areas
- Ecology
- Geography, Physical
UN Sustainable Development Goals (SDGs)
This output has contributed to the advancement of the following goals:
Source: InCites