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Abstract 

Patterns of adaptive variation within plant species are best studied through common 

garden experiments, but these are costly and time-consuming, especially for trees 

that have long generation times. We explored whether genome-wide scanning 

technology combined with outlier marker detection could be used to detect 

adaptation to climate and provide an alternative to common garden experiments.  As 

a case study, we sampled nine provenances of the widespread forest tree species, 

Eucalyptus tricarpa, across an aridity gradient in southeastern Australia.  Using a 

Bayesian analysis we identified a suite of 94 putatively adaptive (outlying) sequence-

tagged markers across the genome.  Population-level allele frequencies of these 

outlier markers were strongly correlated with temperature and moisture availability at 

the site of origin, and with population differences in functional traits measured in two 

common gardens.  Using the output from a canonical analysis of principal 

coordinates we devised a metric that provides a holistic measure of genomic 

adaptation to aridity that could be used to guide assisted migration or genetic 

augmentation. 
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Introduction 

Recent climate change projections suggest that 2°C global average warming by the 

end of this century is inevitable, and an increase of at least 4°C is possible (Peters et 

al. 2013).  Changes in precipitation and more frequent extreme climatic events, such 

as droughts and heatwaves, are also predicted (Ganguly et al. 2009).  Syntheses 

clearly demonstrate that global warming is already impacting on ecosystems and 

biodiversity around the world (Chen et al. 2011; Parmesan 2006).  Thus, new 

approaches are needed to predict the climate-resilience of species that are vital to 

ecosystem stability and to enhance ecological management and restoration.  

Widespread tree species are important targets when investigating resilience to future 

climate change because of their foundational role in maintaining ecological function 

(Lunt et al. 2013) and because they may contain genetic material of unrealised 

adaptive potential. 

A ubiquitous practice towards managing and restoring terrestrial ecosystems is to re-

establish indigenous or other desirable plant species (e.g. Breed et al. 2013; Vallejo 

et al. 2012).  This can include extensive plantings to revegetate degraded 

landscapes and restore biodiversity, sometimes in conjunction with production uses, 

such as perennial cropping systems, agro-forestry or carbon sequestration (Smith et 

al. 2013).  However, investments in revegetation activities currently take little 

account of climate change (Vallejo et al. 2012; Breed et al. 2013), and typically focus 

on maintaining local patterns of genetic variation, assuming that local populations 

are maximally adapted to local conditions and aiming to avoid any risk of 

outbreeding depression (Broadhurst et al. 2008; Byrne et al. 2011; Hereford 2009).  

Under changing environmental conditions local germplasm may not be optimally 
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adapted to future conditions and a static view of ‘local is best’ may no longer be 

relevant (Breed et al. 2013).  Consequently, a new genetic framework is needed to 

promote climate-resilient revegetation, based on a predictive understanding of 

patterns of adaptive variation in plant species and future climates (Booth 2013). 

Historically, patterns of adaptive variation within plant species have been studied 

through physiological, morphometric and fitness comparisons in common gardens 

across climatic gradients (Alberto et al. 2013; Kremer et al. 2013; Savolainen et al. 

2013).  However, this approach can be expensive and may take years to yield 

results, especially with organisms, such as trees, that have long generation times 

(Neale & Kremer 2011).  Recent developments in genomic technologies allow 

greater insights into patterns of adaptive variability (Neale & Kremer 2011; 

Savolainen et al. 2013; Strasburg et al. 2012) and have the potential to form the 

basis of tools determining patterns of adaptive diversity in plant species (Alberto et 

al. 2013; Allendorf et al. 2010; Neale & Kremer 2011).  Indeed, the development of 

predictive models of adaptation based on genome-wide scans - that do not need 

individual loci to be identified - have been envisaged, analogous to genomic 

selection methods used in breeding (Alberto et al. 2013). 

To date, most genomic studies of local adaptation in trees have used either a 

candidate gene approach (Eckert et al. 2009; Strasburg et al. 2012) or a large 

number of anonymous, mainly neutral markers, e.g., AFLPs (Jump et al. 2006; 

Strasburg et al. 2012) and SSRs (Strasburg et al. 2012).  In the candidate gene 

approach, discovery is usually limited by the finite number of genes being screened 

(except in some model organisms, e.g., Arabidopsis; Hancock et al. 2011).  At the 

other end of the spectrum, large numbers of anonymous markers have been used to 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

produce evidence of local adaptation (see Strasburg et al. 2012) but, by their very 

nature, these lack the potential to identify the underlying genomic regions that are 

under selection.  With the increasing accessibility of next-generation sequencing, 

new methods (e.g., RAD sequencing (Davey & Blaxter 2010), DArTseq (Sansaloni et 

al. 2011)) have been developed that provide non-model organisms with genome-

wide sets of sequence-tagged markers that can be linked to a genomic database, 

thereby providing scope to identify regions of a genome that may be linked to local 

adaptation (Stapley et al. 2010). 

Eucalypts are dominant tree species in many ecosystems and are planted 

worldwide.  Thus, an understanding of the genetic basis for adaptation to climate is 

critical for climate-resilient forest management and reafforestation.  Eucalyptus 

tricarpa (red ironbark) is an ecologically important widespread species that grows 

across a rainfall gradient in agricultural and forest landscapes of southeastern 

Australia.  The previous establishment (Stackpole & Harwood 2001) of a range of 

provenances of E. tricarpa in two common gardens located near each end of the 

gradient provides an excellent study system to investigate local adaptation and 

phenotypic plasticity in a widespread eucalypt.  A recent study McLean et al. (2014) 

found evidence of local adaptation in functional traits in E. tricarpa, leading to a 

hypothesis of genetic-based climate adaptation.  Our aim in the present study was to 

test this hypothesis using an indirect approach, where we use genomic scans and 

outlier marker detection to detect signals of adaptation to aridity and cross-reference 

our results with direct evidence from common garden field trials.  We propose that it 

might be feasible to use such an approach to bypass the need for common garden 

field trials for assessments of local adaptation in widespread non-model species.  
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This is particularly relevant when time and resources are limited, and we here 

explore a framework to implement such an approach. 

Materials and methods 

Study species, field sites and common gardens 

Eucalyptus tricarpa (red ironbark) is an important component of Victoria’s threatened 

box-ironbark forests (Kelly & Mercer 2005) and is used for revegetation.  The 

species varies in form across a moisture gradient, growing as dry woodlands in the 

northwest (mean annual precipitation [MAP] of 450 mm) and as tall, dense, wet 

sclerophyll forests in the southeast (MAP of 1200 mm).  We selected three 

provenances from the ‘dry’ end of the aridity gradient (1 Tarnagulla, 2 Mt Bealiba, 3 

Craigie); three provenances from the ‘wet’ end of the gradient (7 Mt Nowa Nowa, 8 

Tuckerbox and 9 Martins Creek); and three provenances between the two extremes 

(4 Heathcote, 5 Heyfield, 6 Christmas Hills).  Provenances were numbered from 1 

(driest) to 9 (wettest) according to the MAP at the site of origin (Figure 1, Table 1). 

Two common garden field trials of E. tricarpa were established in 2000 using 

individual tree, open-pollinated seedlots (families) collected from multiple native 

provenances from throughout the natural range in southeastern Australia (Stackpole 

& Harwood 2001).  The trials were planted towards each end of the rainfall gradient 

(Figure 1) and included the nine provenances that were sampled in the wild.  The 

trials have been thinned to 60% of the original planting density of each family, on the 

basis of tree size (but not form) (see McLean et al. 2014). 
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Analysis of functional traits 

A study of physiological and morphometric traits (hereafter ‘functional traits’) across 

the aridity gradient, based on measurements taken from eight to 10 trees in each of 

the two field trials and 10 trees from each wild population, was conducted in parallel 

with the genomic study.  Traits are listed in Table 2.  The results of the functional trait 

study are reported elsewhere (McLean et al. 2014). 

Analysis of Variance (ANOVA), using the PROC GLM procedure of SAS (SAS 

Institute; Version 9.1) with a one-factor fixed effects model, was used to test whether 

there was significant variation in functional traits among provenances in the wild 

and/or in the common gardens.  To account for multiple testing, for each class of 

response variable (i.e., within ‘wild provenances’, and each trial), probabilities were 

corrected for a 5% False Discovery Rate (FDR) using a conservative ‘dependent’ 

FDR method that allows for correlation between tests (DFDR; Benjamini & Yekateuli 

2001), using PROC MULTTEST of SAS with the DFDR option.  Analysis of 

covariance, fitting site, a covariate (CAP1, see below) and site x CAP1 interaction 

was also undertaken using PROC GLM. 

Genomic methods 

Foliage samples were collected from the nine wild provenances across the rainfall 

gradient (Figure 1, Table 1).  Thirty adult trees were sampled at each locality, except 

in provenance 2 Mount Bealiba and provenance 6 Christmas Hills where 35 and 29 

adult trees, respectively, were sampled.  To avoid sampling close relatives within a 

provenance, samples were taken from trees that were separated by a minimum 

distance of 100 m (at least two tree heights) (Skabo et al. 1998).  The location of 
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each tree was recorded using a Garmin GPSMAP 60CSx (accuracy ranging from 4 

to 10 m). 

DNA was extracted from leaf samples by the Australian Genome Research Facility 

(Adelaide, Australia), using an in-house CTAB protocol.  DNA from each tree was 

standardised to approximately 50 ng μl-1 and sent to Diversity Arrays Technology 

Pty. Ltd. (Canberra, Australia) for genotyping using DArTseq technology (Sansaloni 

et al. 2011).  DArTseq markers are expected to have many of the same qualities as 

DArT markers: dominant in nature, random dispersal across a genome and a large 

proportion coming from coding regions (Petroli et al. 2012).  To ensure that all 

DArTseq markers were highly reproducible, only those with a ‘Q’ value > 2.5 (‘signal-

to-noise’ measure comprising the ratio of the average number of counts for a 

sequence among the samples and their standard deviation) and a Call Rate ≥ 90% 

(percentage of valid scores made across all samples) were included in the final data 

set (about 50% of the markers were discarded). 

Defining an adaptively enriched genetic space 

Outlier loci representative of diversifying selection (i.e., loci whose allele frequencies 

differ more among the nine provenances than would be expected through drift alone) 

were identified using Bayescan v. 2.1 (Foll & Gaggiotti 2008).  Although the island 

model of allele frequency correlation is an underlying assumption of this software, 

various simulation studies have indicated that Bayescan is one of the most robust 

differentiation methods for outlier detection (Narum & Hess 2011; Perez-Figueroa et 

al. 2010; Savolainen et al. 2013; Vilas et al. 2012), even when this assumption is 

violated, for example, in a population with hierarchical structure (De Mita et al. 2013).  

Markers with a low ‘1-Ratio’ (i.e. ‘allele’ or ‘band’ frequency < 0.10 or > 0.90) were 
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excluded from the Bayescan analysis, as recommended by the software manual, 

leaving 3,684 markers.  Default parameters were used for the Bayescan searches, 

prior odds for the neutral model were set to 100 and the FIS prior was set to ‘uniform 

between 0.0 and 0.3’ in accordance with typical values of this inbreeding statistic for 

eucalypts (Byrne 2008).  A ‘q value’ maximum threshold of 0.05 was used to identify 

outlier loci (this yielded a FDR of approximately 5%), which were used to define an 

‘adaptively enriched genetic space’. 

The full DArTseq data set and the data set comprising 94 outlier loci were each 

analysed in a population genetics framework, using GenAlEx 6.41 (Peakall & 

Smouse 2006) to generate matrices of pairwise genetic distances among individuals 

(Huff et al. 1993) and provenances (the widely-used Nei (1972) genetic distance; 

Hedrick 2000; Nei 1972).  The matrix of genetic distance calculated using outlier 

markers and all individuals is called the ‘adaptive genetic distance matrix’.  GenAlEx 

6.41 was also used to perform Analyses of Molecular Variances (AMOVAs) and 

Mantel tests for correlation between provenance-level genetic distance (Nei’s genetic 

distance; Hedrick 2000; Nei 1972) and geographic distance. 

Thirty-five climatic variables (Supporting Information 1) for each tree position (based 

on GPS coordinates) were derived from climatic surfaces in the ANUCLIM 6.1 

software package (Xu & Hutchinson 2011).  ANUCLIM has a resolution of about 1 

km and incorporates altitude data into its climate estimates (such that estimates 

within a 1 km grid can vary depending on altitude).  In addition, a ‘moisture index’ 

(ratio of precipitation to potential evaporation) from the Atlas of Living Australia (ALA) 

(http://www.ala.org.au/) was also used.  Climatic variables were normalised using 

Primer-E (Clarke & Gorley 2006). 
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For each marker in both ‘outlier’ and ‘neutral’ data sets, linear regression was used 

to identify significant associations between the population-level allele frequencies 

and environmental variables as well as 14 functional traits (Table 2).  A chi-square 

goodness-of-fit test was used to determine whether there were significant differences 

between the rate of association discovery in adaptive markers versus neutral 

markers for classes of climatic variables (rainfall, radiation, temperature, moisture 

indices), soil variables or functional traits. 

Aligning the adaptively enriched genetic space with environment 

The matrices of pairwise genetic distances among individuals that were calculated in 

GenAlEx 6.41, were analysed using Permanova software (Anderson et al. 2008).  

Primer-E (Clarke & Gorley 2006) was used to identify sets of highly correlated 

climatic variables (Supporting Information 2).  Of 35 climatic variables from 

ANUCLIM, a subset of the 15 least intercorrelated, representing four classes, was 

used for canonical analyses of principal coordinates (CAP, see below): (i) 

temperature (mean annual temperature, mean diurnal range, maximum temperature 

of the warmest period, minimum temperature of the coldest period, mean 

temperature of the driest quarter), (ii) rainfall (mean annual precipitation, precipitation 

of the wettest period, precipitation of the coldest quarter), (iii) solar radiation (mean 

annual radiation, radiation seasonality, radiation of the driest quarter, radiation of the 

coldest quarter), and (iv) moisture indices (annual mean moisture index, highest 

period moisture index, mean moisture index of highest quarter). 

Principal coordinates analyses (PCoAs) and canonical analyses of principal 

coordinates (CAP; Anderson & Robinson 2003; Anderson & Willis 2003) were 

undertaken with Permanova (Anderson et al. 2008).  CAP is a classical canonical 
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correlation analysis between a subset of the principal coordinates that summarises a 

resemblance matrix and a set of environmental variables associated with each 

object.  The purpose of the CAP was to find axes through the multivariate cloud of 

points (corresponding to the adaptively enriched genetic space of E. tricarpa) that 

had the strongest correlation with another set of continuous variables, in this case, 

climatic variables (above) and soil variables (describing texture, chemistry - NH4, 

NO3, P, K, S, organic C, conductivity, pH in CaCl2, pH in water - and soil particle size 

- clay, coarse sand, sand, fine sand, silt) (McLean et al. 2014).  The first axis of each 

of these analyses, CAP1, represented the direction of molecular change most 

closely associated with change in environmental variables.  This strategy for 

alignment of a molecular and environmental space is conceptually similar to the 

approach undertaken by Parisod & Christin (2008).  CAP1 provided what we 

hereafter term an ‘adaptive genetic index’ that was used as a quantitative predictor 

to model genetic adaptation to either aridity or soil.  Since the soils showed no 

correlation with the adaptively enriched genetic variation (see Results), we 

henceforth refer to the adaptive genetic index (CAP1) with regard to climate. 

As the similarity in environmental variables among trees from the same provenance 

(arising from the 1 km precision of the ANUCLIM climate surface) may result in 

pseudoreplication, the strength of the CAP1 association with environmental variables 

was confirmed by linear regression analyses at the provenance level (n=9).  We 

tested all climatic variables at this stage to 'determine whether there were variables 

other than those used in the CAP that were also closely associated with CAP1.  In 

each test, the dependent variable was CAP1 and the independent variable was the 

environmental variable.  The environmental variables were divided into two classes: 

(a) 35 climatic variables (Supporting Information 1) plus a ‘moisture index’ from ALA; 
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and (b) 15 soil variables (Table 2; Supporting Information 3).  Linear regression was 

done at the provenance level (n=9), using the PROC REG procedure of SAS.  DFDR 

corrections for multiple testing were made within each class of environmental 

variables, as previously detailed.  Similarly, we used linear regression to test whether 

the adaptive genetic index (CAP1) was associated with any functional traits, using 

provenance means for functional trait measurements from three data sets (wild 

provenances, Lake Tyers Trial and Huntly Trial), and controlling for multiple testing 

using a 5% DFDR within each of the three data sets. 

The genetic architecture of adaptation 

Each DArTseq marker is tagged by approximately 60 bp of DNA sequence data.  

The DArTseq analytical service included a BLAST analysis of each marker against 

the E. grandis complete genome sequence (JGI ver. 1.1), providing information 

about the position of each marker on a linkage group (chromosome).  Most of the 

markers gave a single alignment, and some could not be located at all on the E. 

grandis genome.  When more than one alignment was obtained, the alignment with 

the best score was used to assign a position to the marker.  To test whether outlier 

markers were clustered or distributed randomly across the genome, we: 

(a) tested for differences in the relative frequency of outlier markers between 

chromosomes using PROC GLIMMIX of SAS to fit a single factor binary 

model with a logit link function;  

(b) tested whether there were more sequential runs (clusters) of outlier markers 

along each chromosome (with >3 outlier markers) than would be expected by 

chance alone using the Wald-Wolfowitz Test for Randomness (Mendenhall et 

al. 1986); and 
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(c) identified 3 Mb fragments of the genome that had a higher density of outlier 

markers than would be expected by chance alone, with 10,000 random 

allocations to chromosomes giving a frequency distribution for the random 

expectation. 

Matching provenances to sites to which they are best adapted 

To determine whether the results of the CAP could be used for predictive purposes, 

we used the weightings (canonical eigen vectors) derived from CAP of the 15 

climatic variables to calculate a genetic-based Aridity Index (AI) for each site of 

interest, using the following formula (adapted from equation 5.14 in Permanova 

manual):  

AI = Σaibi  

where a = normalised climatic variable x, and b = the weighting of the climate 

variable on the canonical eigenvector aligned with CAP. 

The AI for each of the collection sites and the two common gardens was calculated, 

to predict (i) provenances that would perform well in the common gardens and (ii) 

patterns of adaptation to aridity across the geographic range.  The AIs of the 

common garden sites were used – through site matching – to predict the 

provenances that should perform best in each garden, based on the age 13 growth 

data for the trees from which functional traits were measured (McLean et al. 2014).  

Spatial analysis 

Geographic locations of all records of E. tricarpa were downloaded from ALA 

(accessed 18 September 2013), and outlying samples likely to be errors were 
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removed.  The distribution area was defined by drawing a polygon encompassing a 

15 km buffer around each retained record (see Figure 6).  Ordinary kriging 

(Schabenberger and Gotway, 2004) was used in ArcGIS 10.1 (ESRI, 2012) to 

interpolate the AIs calculated for each ALA record and each provenance study site, 

and create a continuous surface of AI for the distribution area.  A spherical 

semivariogram, with variable search radius and considering the values of 12 

neighbouring records, was used for the spatial calculations (Schabenberger & 

Gotway 2004). 

 

Results 

Provenance differentiation 

AMOVA of the full E. tricarpa DArTseq data set (274 individual trees by 6,544 

markers; 4.6% missing data) revealed significant molecular differentiation between 

provenances (P<0.001) accounting for 7% of the total molecular variation.  The 

genetic distances among provenances were strongly positively correlated with 

geographic distances (r2 = 0.72; P=0.001), with distinct spatial structuring of genetic 

variation from east to west, along the prevailing aridity gradient (Figure 2A). 

Defining an adaptively enriched genetic space 

Bayescan 2.1 identified 94 loci (2.6% of the Bayescan input) that had outlier Fst 

values indicative of disruptive selection (none of the outlier loci had negative alpha 

values indicative of stabilizing selection; see Supporting Information 4 for Fst 

distribution data).  A greater proportion of the variation in the PCoA was accounted 

for by the first dimension (49%) when using the outlier data set (Figure 2B) 
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compared to the PCoA when using the full data set (7.3%; Figure 2A).  AMOVA of 

the outlier data set showed that 36% of the variation between trees could be 

accounted for by differences among provenances, a five-fold increase over that 

observed in the full data set.  There was still a strong correlation between 

provenance-level geographic and genetic distances (r2 = 0.81; P<0.001; n=9), but 

this was expected from the northwest-southeast alignment of the aridity gradient. 

Regression analyses using provenance-level data showed a significant (Χ2
1 = 3214; 

P<0.001) eight-fold increase in the proportion of outlier loci exhibiting a significant 

association with provenance variation in the climatic variables compared to the 

remaining putatively ‘neutral’ markers (Table 2).  Testing the subset of 15 climatic 

variables used for the CAP (below), the enrichment was similar, at seven-fold (X2
1 = 

1392; P<0.001).  The enrichment of climate-marker associations in the outlier data 

set was highest for ANUCLIM moisture indices, followed by radiation variables.  No 

significant enrichment was observed for variables describing the physical and 

chemical soil properties (Table 2), indicating that the main signal of selection on 

these outlier markers is not associated with soil properties.  Further evidence that the 

outlier markers show signals of climate adaptation was provided by their association 

with genetic-based provenance variation in functional traits (Table 2).  Most of the 

functional traits assessed from trees growing in the common-environment field trials 

exhibited significant (P<0.05) differences among provenances (Supporting 

Information 5), demonstrating significant quantitative genetic differentiation across 

the species’ range.  While only 1.5% of provenance-level regressions between the 

outlier markers and trial traits were significant (P < 0.001), this was a significant (Х2
1 

= 68.2; P<0.001) three-fold increase over that observed with the putatively neutral 

loci (Table 2). 
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A climate-aligned adaptive genetic index 

The climate-based adaptive genetic variation amongst trees was summarised by the 

CAP, undertaken using the adaptive genetic distance matrix and the set of 15 

representative climatic variables for the 274 individual trees.  Eighty-three percent of 

the variance in the adaptive genetic distance matrix for individuals was explained by 

the optimum number of PCo axes for this analysis (m=13; see Anderson et al. 

(2008)).  The integrated molecular change defined by the main CAP1 axis was 

strongly correlated with the climatic data set (squared canonical correlation, δ2 = 

0.98; P=0.001), and accounted for 50% of the variation in the adaptive genetic 

distance matrix.  This compares with only an additional 7% being explained by CAP2 

(δ2 = 0.79; P=0.001).  Molecular variation along CAP1 reflected the aridity ranking of 

the provenances, with trees from provenances from wetter regions having more 

negative CAP1 values and those from the drier regions having more positive values 

(Figure 2C).  Thus, CAP1 represents a ‘climate-aligned adaptive genetic index’, with 

increasing values along CAP1 aligning closely with vectors for climatic variables that 

represent high temperature and low rainfall (Figure 2C). 

At the provenance level, linear regressions (Supporting Information 6) indicated 23 

(66%) of the original 35 climatic variables were significantly associated with change 

in CAP1 (after DFDR adjustment; P<0.05). For 13 (37%) of the variables, the 

associations were significant (P<0.001). Increases in CAP1 at the provenance level 

were most closely associated with an increase in the maximum temperature in the 

warmest month (TMXWM, R2 = 0.98) and decreases in the mean rainfall in the driest 

periods (RDRYQ, R2 = 0.96; RDRYM, R2 = 0.96), the lowest period moisture index 
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(MIL, R2 = 0.97) and the mean moisture index of the lowest quarter (MIMLQ, R2 = 

0.97). 

While variation along CAP1 was not associated with significant phenotypic 

differences among provenances in traits measured from the wild (Supporting 

Information 7), it was associated with genetically-based differences in functional 

traits measured in the common gardens (Supporting Information 8).  At the dry 

common garden (Huntly), the only significant associations found were greater leaf 

thickness (differences among provenances F8,80 = 8.5, P<0.001; association with 

CAP1, R2 = 0.82, P (DFDR) < 0.05) and lower SLA (F8,80=7.5, P<0.001; R2 = 0.79, 

P(DFDR) < 0.05) with increasing values of CAP1 (i.e., increasing molecular 

adaptation to aridity).  At the wet common garden (Lake Tyers), the only significant 

association found was between CAP1 and leaf size, where provenances with higher 

CAP1 values tended to have genetically smaller leaves (F8,76=6.1, P<0.001; R2 = 

0.81, P(DFDR) < 0.05) (Figure 3).  The trial-specific nature of these associations was 

confirmed by analysis of covariance (Table 3) that showed differences in the slopes 

of the provenance-level relationships between CAP1 and these functional traits in 

the two common gardens.  Thus, the provenance-level changes in the outlier loci, as 

described by CAP1, were strongly associated with climate variation and quantitative 

genetic-based changes in functional traits, arguing that CAP1 describes molecular 

change associated with adaptation of the provenances to increasing aridity. 

Further evidence that provenance variation in CAP1 is adaptive comes from the 

relative growth of the provenances at the two common garden sites.  Analysis of 

covariance (Table 3) indicated that the slope of the provenance-level relationships 

differred significantly between the wet (Lake Tyers) and dry (Huntly) sites for CAP1 
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and growth, as measured by either tree cross sectional area (trial by CAP1 

interaction F1,14 = 10.2, P<0.01) or tree height (F1,14 = 9.8, P<0.01).  This result 

indicates significant genotype-by-environment interactions for growth traits, and 

provides independent evidence that variation in CAP1 has fitness consequences.  At 

the Lake Tyers (wet) common garden, there were significant differences in 

performance among provenances (height, F8,76 = 4.6, P<0.001; total cross sectional 

area, F8,76 = 7.2, P<0.001), with those originating from wetter sites showing better 

performance than those from drier sites.  For example, provenance-level regression 

of total cross sectional area (R2 = 0.48, P=0.04) and tree height (R2 = 0.59, P=0.02) 

against CAP1 values yielded significant negative correlations, indicating that the wet-

adapted provenances (negative values of CAP1) grew taller and had a greater total 

cross sectional area than dry-adapted provenances when grown at the wet trial site.  

Similarly, at the dry site (Huntly) there were significant, or near significant, 

differences among provenances in performance (height, F8,80 = 2.8, P<0.01; cross-

sectional area, F8,80 = 1.8, P<0.1).  For example, the two best performing 

provenances were those originating from the two most arid sites (1 Tarnagulla and 2 

Bealiba), and CAP1 values were positively linearly associated with cross-sectional 

area (R2 = 0.44, P<0.05).  Thus, a provenance’s CAP1 value – its climate-aligned 

adaptive genetic index – appears to predict provenance growth and performance to 

some degree, with more arid-adapted provenances tending to perform relatively 

better on more arid sites and more wet-adapted provenances performing better on 

wetter sites.  
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Genetic architecture of adaptation to aridity 

At the provenance level, all 94 outlier loci were correlated strongly with either climate 

or functional traits or both (Supporting Information 9).  Twenty-nine percent of the 

outlier markers showed strong, significant correlations with CAP1 (P<0.001), in 

contrast to < 1% of neutral DArTseq markers (i.e., greater than 1000-fold enrichment 

in the outlier loci; Table 2).  Strong associations were found between 82% of the 

outlier markers and genetically-based differences amongst provenance functional 

traits (78% in the dry trial, 77% in the wet trial).  Seventy markers (75%) were 

associated with both climate and genetic traits (Supporting Information 9).  

Of the 6,544 markers used in this study, 4,134 could be located on the E. grandis 

genome sequence and 3,808 of these mapped to the 11 main eucalypt chromosome 

scaffolds (Figure 5; Supporting Information 9).  Of the 94 outlier loci, 48 mapped to 

these 11 chromosomes, four mapped to other contigs (those that have yet to be 

assigned to one of the 11 chromosomes) and 42 could not be located on the E. 

grandis genome sequence (possibly, in part, due to differences in sequence between 

E. tricarpa and E. grandis).  The neutral markers provided reasonably uniform 

coverage of the genome (Figure 5).  Outlier markers associated with adaptation to 

aridity occurred on all chromosomes and, while the proportion per chromosome 

varied 10-fold (from 0.27% on chromosome 2 to 2.7% on chromosome 4), these 

differences were not statistically significant (GLIMMIX F10, 3797 = 1.28, P=0.2376).  

Nevertheless, several lines of evidence indicate that the outlier markers were not 

distributed randomly throughout the genome.  Firstly, tests for sequential runs of 

outliers along each chromosome revealed significant clumping on chromosome 8 

(Wald-Wolfowitz Z value = -6.74, P<0.001 after accounting for multiple testing 
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through a Bonferroni adjustment).  Secondly, 10,000 random allocations of outliers to 

the DArT marker positions that could be mapped onto 3 Mb fragments of the 

chromosomes shown in Figure 5, indicated that an observed 3 Mb fragment with five 

outlier markers (see below) was highly unlikely through chance alone.  This 

conclusion was reached regardless of whether randomisation was undertaken 

across (P=0.0013) or within (P=0.0028) chromosomes.  In contrast, the frequency of 

3 Mb fragments observed with three outlier markers was not significantly greater 

than expected by chance (P>0.05).  Evidence of non-random distribution of the 

outlier markers along the genome is further support for selection impacting regions of 

the genome in which these outlying markers occur. 

The statistically significant cluster of adaptive markers was at the end of 

chromosome 8 and encompassed a block of 6 markers (Figure 5).  Four of these 

outlier markers lay within 403 kb of each other and another two markers were within 

2.9 Mb of these four (Supporting Information 9).  Comparison with the E. grandis 

annotated genome sequence showed that these markers lie in the vicinity of a 

Histidine Kinase, a putative microRNA (potentially involved in leaf longevity and leaf 

morphogenesis) and a Cytochrome P450 gene, all of which could have adaptive 

significance across an aridity gradient.  Nevertheless, while there may be localised 

hotspots for adaptation, the widespread distribution of the outlier markers across the 

eleven chromosomes argues that adaptation to aridity is a genome-wide 

phenomenon and is likely to involve multiple traits and genes. 

Matching provenances to sites to which they are best adapted 

In order to extrapolate the identified adaptive change associated with CAP1 to the 

whole geographic range of E. tricarpa we calculated the AI for all known locations of 
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E. tricarpa, using the 15 normalised climatic variables used in the original CAP.  

Values of AI were initially calculated for the sites of origin of each provenance and 

for the common gardens.  As expected, the trend in growth patterns described for 

CAP1 is reflected by the AI; in general, the better performing provenances in each 

trial were from sites with AI most similar to those of the trial sites (Figure 4).  

Calculating the AI for other known locations of the species allows visualisation of 

predicted climate adaptation across the E. tricarpa distribution; Figure 6 shows a 

clear trend from highly positive AIs (i.e., dry-adapted provenances) in the northwest 

of the range through to highly negative values (i.e., wet-adapted) in the east of the 

range.  There are patches of higher/lower rainfall in the middle of the range that do 

not fit with the general west-to-east trend. 

The AI exhibited an 11-fold enrichment in marker associations with outlier markers 

compared to neutral markers (Table 2).  While the AI calculated here was derived 

from 15 selected climatic variables, single climatic variables, such as the lowest 

period moisture index (MIL) or maximum temperature of the warmest period 

(TMXWM) could provide good surrogates for practical application in this case.  For 

example, MIL was strongly correlated (P<0.001) at the provenance level with CAP1 

(R2= 0.97) and with 30% of the outlier markers.  TMXWM was also strongly 

correlated with CAP1 (R2=0.96) and 21% of the outlier markers. 

 

Discussion 

Many authors have signalled the potential of genomic techniques to inform 

management decisions regarding conservation, restoration or assisted migration 

(Allendorf et al. 2010; Funk et al. 2012).  Maximizing survival in plantings for 
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ecological restoration or climate change mitigation relies in part on choosing the 

most suitable germplasm.  Species and populations that are more plastic are likely to 

adjust to climatic changes in situ, while in those showing strong local adaptation, 

assisted migration is likely to be beneficial (Aitken & Whitlock 2013; Hof et al. 2011; 

Lunt et al. 2013; Richter et al. 2012).  Knowledge of the patterns of local adaptation 

and plasticity in a species is, therefore, critical for making sound seed sourcing 

decisions for revegetation and restoration.  Information underpinning such decisions 

should come from multiple sources, including ecological similarity, phenotypic 

similarity (including plasticity), genome-wide similarity at neutral markers and genetic 

similarity at adaptive loci (Allendorf et al. 2010). 

The best method of detecting local genetic adaptation within a species is to establish 

multiple common garden experiments across a range of environments (Aitken & 

Whitlock 2013; Kremer et al. 2013; Matyas 1996), but this requires significant 

resources for establishment and analysis, particularly when involving long-lived 

organisms such as trees (Neale & Kremer 2011).  One motivation for this research 

was to determine whether genome-wide scanning technology, combined with outlier 

marker detection, could be used to bypass time-consuming and expensive common 

garden experiments.  The study demonstrated the feasibility of a relatively simple 

approach in which plants are sampled from across the full range of ecological 

variants, genotyped using a high-throughput genome-wide approach, and assessed 

for population structure and outlier loci.  If outlying markers are detected, linear 

regression can be used to screen them for associations with environmental 

variables, such as climate or soil.  CAP can be used to identify the vector describing 

the change in the environmental variables most strongly correlated with the adaptive 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

molecular change variation (e.g., the AI) to allow the predictions of contemporary 

and future adaptive surfaces for species. 

Our genome-wide scanning approach provides a means of modelling adaptation and 

has the potential to match overall adaptation of provenances to sites without 

identifying particular loci (Alberto et al. 2013), nor necessarily knowing the underlying 

functional traits (e.g. frost or drought resistance, heat tolerance) involved in 

adaptation.  Although we have shown that there are strong population-level 

associations between outlier loci in E. tricarpa and various climatic variables and 

some functional traits, there are numerous ecophysiological traits that we did not 

assess, but for which we may, unknowingly, have detected adaptive loci.  The 

genome-wide scanning approach to adaptation detection allows for the identification 

of a wide range of adaptive loci, without the a priori constraints imposed by a 

targeted candidate-gene survey (Franks & Hoffmann 2012). 

Further validation of the methodology will involve confirmation that allele frequencies 

of putatively adaptive loci are correlated to climate and/or adaptive traits in 

provenances of E. tricarpa other than those that have been tested here.  

Provenances of particular interest include those that grow in zones where the rainfall 

does not align with the general west-east trend of the rainfall gradient.  Our approach 

will also be useful for identifying changes in population-level adaptive allele 

frequencies over time, both within and between generations (e.g., see (Jump et al. 

2006), as they – or the Aridity Indices derived from them - could provide a means of 

monitoring adaptation to environmental change, as well as hybridization (e.g., where 

differentiated germplasm has been planted) and genetic drift. 
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Many studies of adaptation focus on individual mutations in selected candidate 

genes.  However, focusing on particular genes could result in other important 

sources of adaptive variation being overlooked (Allendorf et al. 2010).  The genome-

wide distribution of adaptive markers found in E. tricarpa is concordant with 

theoretical predictions (Le Corre & Kremer 2003) and other experimental results 

(e.g., Eckert et al. 2010) that have suggested that adaptive genetic variation is a 

genome-wide phenomenon (Neale & Kremer 2011).  Adaptation is generally thought 

to involve multiple loci of small effect that are spread across the genome, 

combinations of which may produce an ‘adaptive phenotype’ (Berg & Coop 2013; 

Pritchard & Di Rienzo 2010).  ‘Hot spots’ of adaptive differentiation, such as the 

cluster of six adaptive markers identified on chromosome eight, may represent co-

adapted gene complexes that are under divergent selection (Nosil et al. 2009).  

Alternatively, they may be a consequence of genetic hitch-hiking (Barton 2000; 

Schlotterer 2003), where selectively neutral markers are linked to a single gene that 

is under positive selection. 

In summary, we have shown that a genome-wide scan and outlier analysis can 

detect evidence of adaptation and its environmental drivers in wild populations of 

non-model species.  This approach will be useful for determining climatic adaptation 

in species identified for environmental plantings so that selection of seed sources 

accounting for climate adaptation (‘climate-adjusted provenancing’) confers greater 

resilience to future climates. 
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Table 1. Location and mean annual climatic conditions (1925-1995; Atlas of Living 

Australia) for the nine provenances and the two common garden sites of Eucalyptus 

tricarpa. Provenance numbering corresponds to Figure 1 and is in order of mean 

annual precipitation (MAP). The provenances are numbered in order of increasing 

MAP. 

Location (code) 
Lati-
tude 
(°N) 

Longi-
tude 

(°E) 

MAP 

(mm) 

Daily max. 
temp. 

(°C) 

Daily 
min. 

temp. 

(°C) 

Annual 
evapo-
ration 

(mm) 

Annual 
solar 
radia-
tion 

(MJ m-2) 

CAP1-
based 
Aridity 
Index 

Provenances         

1. Tarnagulla  -36.76 143.85 460 20.4 7.4 1335 199 3.56 

2. Mt Bealiba  -36.81 143.65 511 19.9 7.2 1306 197 2.04 

3. Craigie  -37.08 143.77 543 19.7 7.1 1249 195 2.08 

4. Heathcote  -36.98 144.75 621 19.3 7.3 1297 193 1.07 

5. Heyfield -37.94 146.73 683 19.1 7.6 1177 184 -1.29 

6. Christmas Hills -37.69 145.31 787 18.6 8.1 1194 177 -1.79 

7. Mt Nowa 
Nowa 

-37.7 148.11 860 19.2 7.5 1241 184 
-2.38 

8. Tuckerbox -37.63 148.24 879 18.7 7 1217 183 -2.72 

9. Martins Creek -37.47 148.58 1020 18.4 6.4 1241 180 -3.70 

Common gardens        
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Huntly -36.63 144.31 472 20.6 7.6 1395 199 3.94 

Lake Tyers -37.82 148.10 840 19.4 8.4 1261 185 -0.82 

 

 

Table 2. Proportions of significant associations (P<0.001) found in marker-trait 

association tests comparing results from 94 ‘outlier’ markers to 3590 ‘neutral’ 

markers in Eucalyptus tricarpa.  Provenance-level allele frequencies of DArTseq 

markers were regressed against climatic variables and soil traits at each site, as well 

as functional traits measured in the wild and in two field trials.  The number of 

marker-trait associations reflects the number of tests done.  Chi-squared values in 

bold are those for which expected values of significant associations in the outlier 

data were adjusted upwards to 5 (from values <5).  This adjustment made the tests 

more conservative and therefore did not bias the test in favour of high significance. 

  Marke
r 
Status 

No. Marker-trait 
Associations 

Percentag
e

Enrichmen
t P (ChiSq)

TRAITS/VARIABLES 
(number) TOTAL P<0.001 P<0.001 P<0.001   

CAP1 (1) 
Neutra
l 3590 1 0.03   

 Outlier 94 27 28.7 1031.2 <0.001

Aridity Index (1) 
Neutra
l 3590 131 3.6
Outlier 94 39 41.5 11.4 <0.001

Climatic variables 
(35)A 

Neutra
l 125650 2894 2.3
Outlier 3290 625 19.0 8.2 <0.001

      Rainfall (8) A 
Neutra
l 28720 773 2.7
Outlier 752 151 20.1 7.46 <0.001

      Temperature (11) A 
Neutra
l 39490 713 1.8
Outlier 1034 146 14.1 7.82 <0.001

      Moisture indices 
(8) A 

Neutra
l 28720 787 2.7
Outlier 752 190 25.3 9.22 <0.001
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      Radiation (8) A 
Neutra
l 28720 621 2.2
Outlier 752 138 18.4 8.49 <0.001

Soil variables (15)B 
Neutra
l 53850 54 0.1
Outlier 1410 1 0.1 0.7 0.0736

Wild traits (14)C 
Neutra
l 50260 137 0.3
Outlier 1316 5 0.4 1.4 0.9689

Trial traits (28) 
Neutra
l 100520 432 0.4
Outlier 2632 39 1.5 3.4 <0.001

      Huntly (dry) (14)D 
Neutra
l 50260 151 0.3
Outlier 1316 15 1.1 3.79 <0.001

      Lake Tyers (wet) 
(14)D 

Neutra
l 50260 281 0.6
Outlier 1316 24 1.8 3.26 <0.001

Plasticity traits (7)E 
Neutra
l 25130 181 0.7

  Outlier 658 20 3.0 4.2 <0.001
A See Supplementary Material 1 

B Soil variables: texture, soil particle size (clay, coarse sand, sand, fine sand, silt), chemistry 
(NH4, NO3, P, K, S, organic C, conductivity, pH in CaCl2, pH in water) (McLean et al., 2014). 

CFunctional traits measured in wild populations: leaf size, leaf thickness, leaf density, specific 
leaf area, circumference of main stem, cellulose 13C, leaf 13C, leaf 15N, C mass, C:N ratio, Leaf 
N area, Leaf N mass, number of stems, total stem cross sectional area (at 1.3 m). 

D Functional traits measured in common garden trials: leaf size, leaf thickness, leaf density, 
specific leaf area, circumference of main stem, cellulose 13C, leaf 13C, leaf 15N, C mass, C:N 
ratio, Leaf N area, Leaf N mass, total cross sectional area, height of main stem. 

E Plasticity (Relative Trait Range; (Valladares et al. 2006) of: leaf size, leaf thickness, cellulose 
13C, , leaf density, height of main stem, total stem cross sectional area (at 1.3 m), Specific 
Leaf Area (SLA). 
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Table 3. Analysis of Covariance (ANCOVA) fitting Eucalyptus tricarpa provenance level traits 

to site (i.e. common garden), CAP1 (i.e. adaptive molecular index) and CAP1 X site 

interaction. Sig – significance level - * P≤0.05, **P≤0.01, ***P≤0.001, ns - P>0.05 (not 

significant).  SLA – specific leaf area; CSA – cross-sectional area.  Leaf Nmass – leaf nitrogen 

content per unit mass; Leaf Narea – leaf nitrogen content per unit area. 

Trait            Site              CAP1 CAP1 X Site 
F1,14 Sig F1,14 Sig F1,14 Sig  

Cellulose 13C 364.9 *** 3.0 ns 1.3 ns 
Density 86.3 *** 2.4 ns 1.2 ns 
Leaf thickness 45.5 *** 47.4 *** 12.7 ** 
SLA 126.6 *** 29.8 *** 11.3 ** 
Leaf size 23.7 *** 36.4 *** 8.7 * 
Leaf Nmass 26.6 *** 0.0 ns 1.4 ns 
Leaf Narea 8.7 * 10.8 ** 2.0 ns 
CSA 0.4 ns 2.6 ns 10.2 ** 
Height 18.5 *** 1.9 ns 9.8 ** 

 

Figure Captions 

Figure 1. Locations of the nine study populations of Eucalyptus tricarpa (numbers 1-

9) and the two common garden provenance trials at Huntly (open star) and Lake 

Tyers (solid star) in southeastern Australia. Population numbering corresponds to 

that in Table 1. 

Figure 2. Ordination of Eucalyptus tricarpa DArTseq data.  (A) Full DArTseq data set 

(6,544 DArTseq markers); (B) Outlier data set (94 outlier markers); (C) Canonical 

analysis of Principal Coordinates (CAP) showing the directionality of 15 climatic 

variables (from ANUCLIM), of which 10 are labelled (see Supporting Information 1).  

Note that the axes of (C) are not scaled by their respective eigenvalues (Anderson et 

al. 2008). 
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Figure 3. Association between mean leaf size and the adaptive genetic index (CAP1) 

for each provenance of Eucalyptus tricarpa grown in common gardens at the dry 

site, Huntly (black diamonds, black regression line), and the wet site, Lake Tyers 

(grey squares, grey regression line). 

Figure 4.  Association of performance (mean total cross sectional area of stems) of 

Eucalyptus tricarpa provenance material in the field trials with the CAP-derived 

Aridity Index (AI) at the site of origin of each provenance.  Provenances from wetter 

areas (more negative AI) grew better in the wetter field trial (Lake Tyers, grey 

squares and regression line), while provenances from drier areas (more positive AI) 

grew better in the drier field trial (Huntly, black diamonds and regression line).  The 

AI at each trial site is indicated by an arrow (Lake Tyers, grey arrow; Huntly, black 

arrow). 

Figure 5.  Locations of DArTseq markers (grey crosses) from Eucalyptus tricarpa 

along the 11 major linkage groups of E. grandis.  Of the 94 outlying markers, 48 

could be mapped to the eleven main linkage groups of the E. grandis genome.  The 

43 outlying markers that were strongly associated with climate are shown as black 

squares; other outliers are shown as white triangles. 

Figure 6.  Predicted surface of climate adaptation across the entire range of 

Eucalyptus tricarpa.  The map is derived from AI values calculated for all reliable 

records of E. tricarpa in the Atlas of Living Australia.  Provenances used in this study 

are represented by numbers in white circles.  Common garden trials are indicated by 

squares (HL – Huntly (dry) trial; LT – Lake Tyers (wet) trial).  Inset shows the 

distribution of E. tricarpa in relation to the whole of Australia. 
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Supporting Information 1. ANUCLIM climatic variables and abbreviations. 

Supporting Information 2. Correlations between ANUCLIM climatic variables at 

sampling sites of Eucalyptus tricarpa provenances. 

Supporting Information 3.  Linear regression of soil variables vs CAP1 in wild 

populations of Eucalyptus tricarpa. 

Supporting Information 4. Fst distribution and outlier selection. 

Supporting Information 5. ANOVA of functional traits in Eucalyptus tricarpa in wild 

populations and in two field trials. 

Supporting Information 6. Linear regression of climate variables vs CAP1 in wild 

populations of Eucalyptus tricarpa. 

Supporting Information 7. Linear regression of CAP1 vs functional traits in wild 

populations of Eucalyptus tricarpa. 

Supporting Information 8.  Linear regression of CAP1 vs functional traits in two 

common garden trials of Eucalyptus tricarpa. 

Supporting Information 9. Outlier DArTseq markers from Eucalyptus tricarpa, 

associations with climate, CAP1, Aridity Index and functional traits in the two 

provenance trials; number of locations that each marker could be placed on the E. 

grandis reference genome; the scaffold number (scaffolds 1-11 correspond to the 11 

chromosomes of E. grandis) to which the marker was mapped (with best score), 

position on the linkage group or scaffold and the first 60 bp of the DNA sequences of 

the DArTseq marker. 
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