http://research.usc.edu.au/vital/access/manager/Index ${session.getAttribute("locale")} 5 Ground Penetrating Radar Observations of Present and Former Coastal Environments, Great Sandy National Park, Queensland, Australia http://research.usc.edu.au/vital/access/manager/Repository/usc:20726 Thu 20 Jun 2019 14:37:24 AEST ]]> Evaluation of a partial flow-through culture technique for pearl oyster (Pinctada margaritifera L.) larvae http://research.usc.edu.au/vital/access/manager/Repository/usc:14677 Mon 02 Feb 2015 15:31:10 AEST ]]> Epic landslide erosion from mountain roads in Yunnan, China-challenges for sustainable development http://research.usc.edu.au/vital/access/manager/Repository/usc:14478 1.3 times that of cut slope failures. Many small landslides occurred along road cuts, but these were often trapped on the road surface. Given the magnitude of the landslide problem and the lack of attention to this issue, a more sustainable approach for mountain road development is outlined based on an analysis of landslide susceptibility and how thresholds for landslide trigger mechanisms would be modified by road location and different construction techniques.]]> Fri 14 Jun 2019 13:47:16 AEST ]]> Characteristics of landslides in unwelded pyroclastic flow deposits, southern Kyushu, Japan http://research.usc.edu.au/vital/access/manager/Repository/usc:17602 200 mm) storms that triggered landslides was much lower than for smaller (≤ 200 mm) storms. Mean storm intensity and antecedent 7 day rainfall (API7) thresholds of > 5 mm h-1 and ≤ 30 mm (or API30 ≤ 60 mm), respectively, were useful to identify landslides triggered by rapid pore water pressure response, especially for shorter (< 20 h) duration events. During smaller storms with lower intensity, landslides are likely affected by a combined increase in soil weight and loss of suction when API30 ≥ 150 mm; simulations indicated that these weight and suction changes due to rainfall accumulation decreased factor of safety in steep Shirasu slopes, but did not necessarily trigger the landslides. All but two of the 21 landslides that plotted below a general rainfall intensity-duration threshold for landslide initiation had API30 values > 235 mm, indicating that they were highly influenced by the combined effects of the accumulated weight of rainfall and loss of suction. Our findings show that both event rainfall characteristics and antecedent conditions affect the hydrogeomorphic processes that trigger different types of landslides in Shirasu. This knowledge and the thresholds we have identified are useful for predicting the occurrence of different types of landslides in Shirasu deposits and improving sediment disaster prevention practices, including real-time warning systems.]]> Fri 14 Jun 2019 13:46:52 AEST ]]> Characteristics of landslides in unwelded pyroclastic flow deposits, southern Kyushu, Japan http://research.usc.edu.au/vital/access/manager/Repository/usc:19570 200 mm) storms that triggered landslides was much lower than for smaller (≤ 200 mm) storms. Mean storm intensity and 7-day API (API7) thresholds of > 5 mm h−1 and ≤ 30 mm (or API30 ≤ 60 mm), respectively, were useful to identify landslides triggered by rapid pore water pressure response, especially for shorter (< 20 h) duration events. During smaller storms with lower intensity, landslides are likely affected by a combined increase in soil weight and loss of suction when API30 ≥ 150 mm; simulations indicated that these weight and suction changes due to rainfall accumulation decreased the factor of safety in steep Shirasu slopes, but did not necessarily trigger the landslides. Most of the landslides that were plotted below a general rainfall intensity–duration threshold for landslide initiation occurred during smaller storms with API30 values > 200 mm, indicating that they were highly influenced by the combined effects of the accumulated weight of rainfall and loss of suction. Our findings show that both event rainfall characteristics and API affect the hydrogeomorphic processes that trigger different types of landslides in Shirasu. This knowledge and the thresholds we have identified are useful for predicting the occurrence of different types of landslides in unwelded Shirasu deposits and improving sediment disaster prevention practices, including real-time warning systems.]]> Fri 14 Jun 2019 13:46:21 AEST ]]>