Projected Coordinate System: Conical Projection

Interact with the Earth projected on a cone tangent at the latitude of 45° N

Watch the animation of the Earth projected on a cone and its unwrapping

The world map created with conical projection
Projected Coordinate System: Conical Projection

Interact with the Earth projected on a cone tangent at 30° N latitude

Watch the animation of the Earth projected on a cone and its unwrapping

The world map created with conical projection

For details, contact Dr Sanjeev Kumar Srivastava, Sanjeev.Srivastava@usc.edu.au
School of Science and Education, Faculty of Science Health and Education, University of the Sunshine Coast
Projected Coordinate System: Conical Projection

Mathematics behind conical projection
(For details, including inverse equations as well as equations for ellipsoids, see Snyder 1987, OGP 2011, and Weisstein 2011)
For the spherical earth

\[x = \csc(\sec^{-1} h + \phi) \cos \phi \sin \left(\frac{\lambda}{\sqrt{h^2 - 1}} \right) \]

\[y = \csc(\sec^{-1} h + \phi) \cos \phi \cos \left(\frac{\lambda}{\sqrt{h^2 - 1}} \right) \]

Where \(x \) and \(y \) are the rectangular coordinates, \(\phi \) is the latitude, \(\lambda \) is the longitude, and \(h \) is the height of the cone.