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Table 1. The sequences of P1, P2 and peptides modified based on P1 or P2. 

Name Sequence Net 

charge 

MW 

(Da) 

Modification description 

P1 FFKKF FKKFF KKFFK 

K-OH 

+8 2220.84 - 

P1.1 FFKKF FKKFF KKFF-

OH 

+6 1964.49 C-ter truncate (2 amino acids)  

P1.2 FFKKF FKKFF KK-OH +6 1670.14 C-ter truncate (4 amino acids) 

P1.3 D-FFKKF FKKFF 

KKFFK K-OH 

+8 2220.84 D-amino acid substitution 

P1.4  FRKKF RKKFF KKFFK 

K-OH 

+8 2238.82 Sequence pattern, (FxKK)2(FFKK)2
a 

P1.5 FRKKF RKKFR KKFRK 

K-OH 

+12 2256.85 Sequence pattern, (FxKK)4 

P1.6 FFKAF FKAFF KAFFK 

A-OH 

+4 1992.45 C-ter hydrophobic substitution & sequence pattern 

(FFKy)4
b 

P2 FFRRF FRRFF RRFFR R-

OH 

+8 2444.95 - 

P2.1 EFRRE FRREF RREFR 

R-OH 

0 2372.70 N-ter hydrophilic substitution & helical structure 

stabilization by E-R bridges 

P2.2 WYRRF YRRAH 

RRAHR R-OH 

+8 2343.72 N-ter hydrophobicity decreased & C-ter helical structure 

stabilization by AH 

P2.3 WYHHF YHHAH 

RRAHR R-OH 

+4 2267.53 N-ter hydrophobicity decreased & helical structure 

stabilization by AH, HH and WH bridge 

P3 (negative 

control) 

GTELP SPPSV WFEAE 

F-OH 

-3 1792.99 - 

a, b
 x and y represent hydrophilic and hydrophobic amino acids, respectively. 
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Table 2. Hydrogen bonds between P1 and IL-10R1 complex [side chain NH (HN), hydroxyl hydrogen (HO); 

backbone amide nitrogen (H), backbone carbonyl oxygen (O), carboxylate oxygen (OX) and hydroxyl oxygen 

(or amide-connected oxygen on side chain, OH) 

P1 IL-10R1 Bond length (Å) 

Lys7: HN,1 Ser137: OH 1.94 

Lys7: HN,2 Asp133: Ox 1.80 

Lys8: HN,1 Ser137: O 2.36 

Lys8: HN,2 Ser140: OH 2.23 

Lys12: H Asp99: OX,1 1.95 

Lys12: HN,1 Arg95: O 2.13 

Lys12: HN,2 Glu100: OX 1.80 

Lys16: HN,1 Asp99: OX,2 1.75 

Lys16: HN,2 Ser191: OH 2.05 
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Table 3. The dissociation free energy (ΔG
0

D,solv, in kcal/mol) of IL-10R with IL-10, P1 or P2 (the full 

calculation results were listed in S6 Table). 

  IL-10/IL-10R1 P1/IL-10R1 P2/IL-10R1 

ΔG
0
D,solv 

PB -39.46 -46.53 -62.39 

GB -28.71 -40.75 -66.39 
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Figure 1. Effect of different TFE concentrations on the conformation of P1 and P2. Far-UV CD spectra of P1 

(A) and P2 (B). Representative data are shown from three independent experiments performed in triplicate. 
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Figure 2. Interactions between P1/P2/P3 and IL-10R1 using Surface Plasmon Resonance Spectroscopy. 

Sensorgrams of the surface binding affinities of peptide P1 (A), P2 (B) and P3 (C) at different concentrations 

in relation with time, and (D) Binding affinity measurement of P1, P2 and P3 with IL-10R1. 
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Figure 3. The effects of truncated and mutated P1 peptides on IL-10 level in U937 cells stimulated by LPS. 

Supernatants were measured for the presence of IL-10 by ELISA. The concentration of LPS is 4×10
3 

µM: 

3×10
5
 human U937 were either left unstimulated (UN) or stimulated with LPS, LPS+0.1 µM of anti-IL10R, 

LPS+0.3 µM of aIL10, LPS+0.1 µM of aIL10R, L+P1, P1.1, P1.2, P1.3, P1.4, P1.5, P2 and P3 at 4.50 µM 

overnight, respectively. P values were calculated using two tailed Student‟s t-test. 
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Figure 4. The effects of mutated P2 peptides on IL-10 secretion in PBMCs stimulated by LPS. Supernatants 

were measured for the presence of IL-10 by ELISA. The concentration of LPS is 4×10
3 

µM (100 ng): 1×10
6
 

human U937 were either left unstimulated (UN) or stimulated with LPS, LPS+0.3 µM of anti-IL10, LPS+0.1 

µM of anti-IL10 receptor (aIL10R), LPS+P1, P2, P2.1, P2.2, P2.3 and P3 at 4.50 µM overnight, 

respectively. P values were calculated using two tailed Student‟s t-test. 


