A peer-reviewed version of this preprint was published in PeerJ on 29 March 2017.

View the peer-reviewed version (peerj.com/articles/3111), which is the preferred citable publication unless you specifically need to cite this preprint.

https://doi.org/10.7717/peerj.3111
External kinetics of the kettlebell snatch in trained athletes

James A Ross 1, Justin W L Keogh 2, 3, 4, Cameron J Wilson 1, Christian Lorenzen 5

1 School of Exercise Science, Australian Catholic University, Melbourne, Australia
2 Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Australia
3 Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
4 Cluster for Health Improvement, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sunshine Coast, Australia
5 School of Exercise Science, Australian Catholic University, Melbourne, Australia

Corresponding Author: James A Ross
Email address: james.ross33@yahoo.com

Background. Kettlebell lifting has gained increased popularity as both a form of resistance training and as a sport, despite the paucity of literature validating its use as a training tool. Kettlebell sport requires participants to complete the kettlebell snatch continuously over prolonged periods of time. Kettlebell sport and weightlifting involve similar exercises, however their traditional uses suggest they are better suited to training different fitness qualities. This study examined the three dimensional ground reaction force (GRF) and force applied to the kettlebell over a six minute kettlebell snatch set in 12 kettlebell trained males.

Methods. During this set, VICON was used to record the kettlebell trajectory with nine infrared cameras while the GRF of each leg was recorded with a separate AMTI force plate. Over the course of the set, an average of 13.9 ± 3.3 repetitions per minute were performed with a 24 kg kettlebell. Significance was evaluated with a two-way ANOVA and paired t-tests, whilst Cohen’s F (ESF) and Cohen’s D (ESD) were used to determine the magnitude.

Results. The applied force at the point of maximum acceleration was 814 ± 75 N and 885 ± 86 N for the downwards and upwards phases, respectively. The absolute peak resultant bilateral GRF was 1746 ± 217 N and 1768 ± 242 N for the downwards and upwards phases, respectively. Bilateral GRF of the first and last 14 repetitions was found to be similar, however there was a significant difference in the peak applied force (F (1.11) = 7.42, p = 0.02, ESF = 0.45). Unilateral GRF was found have a significant difference for the absolute anterior-posterior (F (1.11) = 885.15 p < 0.0001, ESF = 7.00) and medio-lateral force vectors (F (1.11) = 5.31, p = 0.042, ESF = 0.67).

Discussion. Over the course of a single repetition there were significant differences in the GRF and applied force at multiple points of the kettlebells trajectory. The kettlebell snatch loads each leg differently throughout a repetition and performing the kettlebell snatch for six minutes will result in a reduction in peak applied force.
Manuscript title: External kinetics of the kettlebell snatch in trained athletes

Authors: James A. Ross¹, Justin W.L. Keogh² ³ ⁴, Cameron J. Wilson¹, and Christian Lorenzen¹.

¹ School of Exercise Science, ACU, Melbourne, Australia
² Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Australia
³ Sports Performance Research Institute New Zealand, AUT University, Auckland, New Zealand
⁴ Cluster for Health Improvement, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast

Corresponding Authors:
James Ross
Email address: james.ross33@yahoo.com
INTRODUCTION

Kettlebell sport, also referred to as Girevoy Sport (GS) competition originated in Eastern Europe in 1948 (Tikhonov et al. 2009). In recent years, kettlebell lifting has gained increased popularity as both a form of resistance training and a sport. The kettlebell snatch is one of the most popular exercises performed with a kettlebell. The movement is an extension of the kettlebell swing, and involves swinging the kettlebell upwards from between the legs until it reaches the overhead position. To date, the barbell snatch has received much attention and reviews of the literature have demonstrated it be an effective exercise for strength and power development (Escamilla et al. 2000; Garhammer 1993). In contrast, the kettlebell snatch has only just started to receive research attention (Falatic et al. 2015; Lake et al. 2014; McGill & Marshall 2012; Ross et al. 2015).

In a classic kettlebell competition, the winner is the person who completes the most snatch lifts within a 10 minute period. Current rules stipulate that the athlete can only make one change in the hand by which they hold the kettlebell during this ten minute period. Additionally, to score a point the kettlebell must be locked out motionless overhead. The overhead position is known as fixation, which was found to have the lowest movement variability compared to the end of the back swing, and the midpoints of the upwards and downwards phases within its trajectory (Ross et al. 2015). It has been proposed that due to the kettlebell’s unique shape and its resulting trajectory, the unilateral kettlebell snatch may be better suited for performing multiple repetitions than a single maximum effort (Ross et al. 2015). Specifically, the kettlebell snatch trajectory follows a ‘C’ shaped trajectory as it can move in between the athlete’s legs (Ross et al. 2015), in contrast to an ‘S’ shaped trajectory of the barbell snatch (Newton 2002), which moves around the knees. In elite kettlebell sport, the kettlebell snatch also involves a downwards phase which
follows a smaller radius compared to the kettlebell’s upwards phase (Ross et al. 2015). The downwards phase gives it more of a cyclical natural than the barbell snatch, where the barbell is dropped from the overhead recovery position, thus allowing a training stimulus in both the upwards and downwards phases.

The kettlebell snatch and barbell snatch move though a number of different phases that share some similarities. From the starting position the barbell snatch has the following phases: first pull, transition, second pull and catch phase (Haff & Triplett 2015). In contrast, the kettlebell snatch starts at fixation and has the following phases: drop, re-gripping, back swing, forward swing, acceleration pull and hand insertion phases (Ross et al. 2015; Rudnev 2010). The second pull has been shown to be the most powerful motion within the barbell snatch (Garhammer 1993). Similarly, the acceleration pull phase has been suggested to be the most explosive phase of the kettlebell snatch (Rudnev 2010).

There is currently little research on the kinetics of the kettlebell snatch. The only study to date recorded the bilateral ground reaction force (GRF) of the kettlebell swing and snatch (Lake et al. 2014). The kettlebell snatch and two handed swing were analysed over three sets of eight maximum repetitions, with horizontal and vertical work, impulse, mean force and power of the kettlebell snatch and swing calculated (Lake et al. 2014). Both exercises had greater vertical impulse, work, and mean force power than the horizontal equivalent regardless of phase (Lake et al. 2014). The vertical component of the kettlebell snatch and two handed swing were comparable, whilst the two handed swing had a larger amount of work and rate of work
performed in the horizontal plane (Lake et al. 2014). One of the limitations was that GRF was
investigated bilaterally when the movement is unilateral and is therefore likely to load the
ipsilateral and contralateral legs differently (Lauder & Lake 2008). This study aims to build on
the work by Lake et al (2014) by investigating the unilateral GRF’s of the kettlebell snatch,
throughout key positions of a single repetition and a prolonged set. In addition, force applied to
the kettlebell by the lifter was also examined and will further the understanding of the kinetics of
the key points of the trajectory outlined previously (Ross et al. 2015). These data will offer
coaches an insight into the kinetic demands that the kettlebell snatch places upon the body
providing insight to guide kettlebell prescription.

METHODS

Study Design

Twelve trained kettlebell lifters performed six minutes of the kettlebell snatch exercise with one
hand change, as is commonly performed in training by GS competitors. The ground reaction
force (GRF) was recorded with two AMTI force plates, and kettlebell trajectory was
simultaneously recorded with a nine camera VICON Motion Analysis System. The force was
determined using the kettlebell's known mass (kg) and the acceleration (m.s\(^{-2}\)) determined via
reverse kinematics. The aim was to identify the external demands placed on each leg and the
changes in kinetics during a prolonged kettlebell snatch set over six minutes. The dependent
variables were: GRF (N), applied force (N), impulse (N.s) & resultant velocity of the kettlebell
(m\cdot s\(^{-1}\)). These were measured at the following time points: time of peak GRF, point of maximum
ekettlebell acceleration, point of maximum kettlebell velocity, end of backswing, lowest kettlebell
point, midpoint and highest kettlebell point.
Subjects

Twelve males with a minimum of three years kettlebell training experience (age 34.9 ± 6.6 yr, height 182 ± 8.0 cm and mass 87.7 ± 11.6 kg, hand grip strength non-dominant 54.5 ± 8.0 kg and dominant 59.6 ± 5.5 kg) gave informed consent to participate in this study. They were free from injury and their training regularly included six minute kettlebell snatch sets. Prior to taking part in the study the participants performed 6.0 ± 2.1 training sessions per week, of which 3.3 ± 1.9 were with kettlebells. The Australian Catholic University’s ethics review panel granted approval for this study to take place (ethics number 2012 21V). All participants gave written consent to take part in this research.

Procedures

During a single testing session, athletes performed one six minute kettlebell snatch set with a hand change taking place at the three minute mark. A six minute set was chosen as opposed to the GS standard ten minute set, as it was attainable for all subjects and is a common training set duration for non-elite kettlebell sport athletes. Hand grip strength was tested with a grip dynamometer with a standardised procedure 10 minutes pre-set and immediately post test (Medicine 2013). They were provided with chalk and sand paper (as this is standard competition practice) and asked to prepare the kettlebell as they would before training or competition. A range of professional-grade kettlebells of varying masses (Iron Edge, Australia) were available for the lifters to perform their typical warm ups. Following the athletes warm up, each six minute set was performed with a professional-grade 24kg kettlebell, as is the standard for kettlebell sport within Australia. Three markers were used, one (26.6 mm x 25 mm) was placed on the front
plate of the kettlebell, and two markers (14 mm x 12.5 mm in diameter) were placed on the
crater base of each handle. The markers were placed in these positions to help avoid
contact with the lifter during the set. Nine VICON infrared cameras (250Hz) were placed around
two adjacent AMTI force plates (1000Hz). The point of origin was set in the middle of the
platform, to calibrate the cameras’ positions. The athlete was instructed to stand still with one
foot on each plate and the kettlebell approximately 20 cm in front of him before the start of the
six minute set in order to process a static model calibration. A self-paced set was then performed
as if they were being judged in a competition. To initiate the set, the kettlebell was pulled back
between the legs.

VICON Nexus software was used to manually label markers, and a frame-by-frame review of
each trial was performed to minimise error. Average marker position was computed at rest from
initial position. The initial position of the markers was used to compute vectors from centroid to
the centre of gravity. The motion of the kettlebell was computed using Singular Value
Decomposition (SVD) of the marker transformations into a translation, a rotation and an error
value (Duarte, 2014). Root mean square error was calculated and time steps with high error
values were dropped from analysis. The centre of gravity locations were computed from the
translation and rotation of the kettlebell geometry. A third order B-spline was used to interpolate
and filter the three dimensional trajectories using the python function
"scipy.interpolate.splprep". The spline functions ("knots") were then used to compute the
velocity and acceleration.
Time steps of the kettlebells trajectory that contained the kettlebell maximum velocity, maximum acceleration and the following points: end of the back swing, lowest point, midpoints and highest point (overhead lockout position) were identified. At these time steps the force applied to the kettlebell, resultant GRF, and resultant velocity were recorded. Time steps moving from the overhead lockout position to the end of the backswing were allocated a relative negative time in seconds, with the end of the backswing as zero. The time steps from the end of the backswing moving to the overhead lockout were given a positive relative time. Over the entire set at the point that peak bilateral absolute resultant force or peak resultant force for the ipsilateral and contralateral leg was reached, the three dimensional force was reported. In addition to the entire set, the three dimensional bilateral forces were reported for the first and last 14 repetitions. Fourteen repetitions were chosen because it was the closest whole number to the mean repetitions per minute performed by the subjects over the six minutes. The forces were presented in both absolute units and relative to each subject’s body mass. As the majority of the work occurred between the end of the back swing and the midpoint of the upwards and downwards phases of its trajectory, impulse for each leg was calculated over this period.

Statistical Analyses

Data were placed into the Statistical Package for the Social Sciences (SPSS), Version 22. The data were screened for normality using frequency tables, box-plots, histograms, z-scores and Shapiro-Wilk tests prior to hypotheses testing. One univariate outlier was detected and removed from three of the data sets, relative unilateral vertical GRF, relative and absolute upwards phase medio-lateral GRF. In order to satisfy normality, the medio-lateral GRF for the absolute upwards
phase was transformed using the base 10 logarithm function. Following data screening, the final sample numbered 11 to 12 participants.

A 2x2 two-way ANOVA was used to evaluate the difference within peak applied force, absolute and relative resultant, anterior-posterior, medio-lateral and vertical bilateral GRF vectors for both the first and last 14 repetitions and the upwards and downwards phases. Additionally, absolute and relative unilateral GRF vectors were compared with a 2x2 two-way ANOVA between the ipsilateral and contralateral legs as well as the upwards and downwards phases. Temporal measures of kinetics were compared within different time steps of the kettlebell trajectory with two-tailed paired t-tests and a Bonferroni adjustment. Within a repetition, the resultant velocity, bilateral GRF and applied force of different time steps were compared to their peak value.

The magnitude of the effect or effect size was assessed by Cohen’s D (ESD) for t-tests and Cohen’s F (ESF) for two-way ANOVA. Trials from both right and left hands were assessed. If the lifter performed an uneven number of repetitions with each hand, the side with the greatest number had repetitions randomly removed in order to allow for an even amount of pairs. Removed repetitions were evenly allocated between each minute. Within each minute, randomly generated numbers corresponding to each were used to determine removed repetitions. The magnitude of the paired t-test effect was considered trivial ESD <0.20, small ESD 0.20-0.59, moderate ESD 0.60-1.19, large ESD 1.20-1.99, very large ESD 2.0-3.99 and extremely large ESD \(\geq 4.0 \) (Hopkins 2010). Statistical significance for the paired t-tests required \(p < 0.001 \). The magnitude of difference for the two-way ANOVA was reported as trivial ESF < 0.10, small ESF 0.10-0.24, medium ESF 0.25-0.39 and large ESF \(\geq 0.40 \) (Hopkins 2003). The two-way ANOVA required \(p < 0.05 \) for statistical significance.
RESULTS

A total number of 972 repetitions were analyzed for the twelve lifters, each performing an average of 13.9 ± 3.3 repetitions per minute. Grip strength of the hand that performed the last three minutes of the set had a reduction (p = 0.001, ESD = 0.77) of 9.8 ± 4.4 kg compared to pre-test results. Tables 1 and 2 show descriptive statistics for the three dimensional GRF and applied force during the first and last 14 repetitions for the absolute and relative values, respectively.

The absolute peak applied force was significantly larger for the first repetition period compared to the last [i.e. first 14 vs last 14] when a full repetition was analyzed (i.e. upwards and downwards phases combined) (F (1.11) = 7.42, p = 0.02, ESF = 0.45).

Table 1. about here

Table 2. about here

Tables 3 and 4 show the descriptive statistics for the absolute and relative GRF of the ipsilateral and contralateral leg. At the point of peak resultant unilateral GRF over an entire repetition, a large significant increase was found within the ipsilateral leg in the anterior-posterior vector (F (1.11) = 885.15 p < 0.0001, ESF = 7.00). In contrast, a large significant increase was found within the contralateral leg of the medio-lateral force vector over a full repetition for both the absolute GRF (F (1.11) = 5.31, p=0.042, ESF = 0.67) and relative GRF (F (1.10) = 9.31, p=0.01, ESF = 0.54). No significant differences were found for the impulse of the upwards or downwards
phase. Figure 1 demonstrates a typical three dimensional GRF of the ipsilateral and contralateral side.

Figure 1.

Table 3.

Table 4.

Tables 5 and 6 provide data on how the kinematics and kinetics of the kettlebell snatch changed throughout the range of motion. Specifically, these tables list the relative times, resultant velocity and temporal changes in both applied force and GRF with a comparison to their respective peak values during the downwards and upwards phases, respectively. Within the downwards phase there was no significant difference between peak bilateral GRF and bilateral GRF at the point of maximum acceleration, peak resultant velocity and resultant velocity at the midpoint. All other points had significant differences (see tables 5 & 6).

Table 5

Table 6
DISCUSSION

Three dimensional motion analysis was used in this study to document kettlebell snatch kinetics of trained kettlebell athletes over a six-minute period. The main finding of this study was that the bilateral GRFs were similar from the first and the last 14 repetitions, however, there were large significant differences within the applied force of the first and last 14 repetitions. Large effect size differences in the GRF were found between the ipsilateral and contralateral legs within the anterior-posterior and medio-lateral vectors. Over the course of a single repetition, large differences in applied force and GRF were evident as the kettlebell moved from the end of the backswing, to the lowest point, midpoint and highest point in the upwards and downwards phases. There were large differences in the bilateral GRF and the applied force across different parts of the range of motion.

The kettlebell swing has received more attention than the kettlebell snatch in the scientific literature, possibly due to the relative ease of teaching and learning of the swing compared to the snatch. The kettlebell swing has been found to be an effective exercise for improving jump ability (Jay et al. 2013; Lake & Lauder 2012a; Lake & Lauder 2012b; Otto III et al. 2012), strength (Beltz et al. 2013; Lake & Lauder 2012a; Lake & Lauder 2012b; Manocchia et al. 2010; Otto III et al. 2012) and aerobic fitness (Beltz et al. 2013; Falatic et al. 2015; Farrar et al. 2010; Hulsey et al. 2012; Thomas et al. 2013). Previous research involving the (one armed) kettlebell snatch found the bilateral mechanical demands were similar to that reported for the two handed kettlebell swing in several ways (Lake et al. 2014). For example, both exercises have a net
vertical impulse greater than the net horizontal impulse (Lake et al. 2014). There appears to be little difference in the magnitude of the vertical impulse of the two kettlebell exercises, however the horizontal impulse appears larger for the swing (Lake et al. 2014). It is acknowledged that the two handed kettlebell swing may be a more accessible choice for lower body power and strength training than the kettlebell snatch. However, the unilateral nature of the kettlebell snatch results in a different three dimensional kinetic profile and may provide greater rotational core stability demands than the two handed kettlebell swing. Muscle activation of the contralateral upper erector spinae has been shown to be higher than the ipsilateral portion of this muscle group during the one armed swing and the same side during the two armed swing (Andersen et al. 2015). Further, results of the current study indicated that the kettlebell snatch produced large effect size differences in two vectors of GRF between the two legs. The peak resultant force of the ipsilateral leg was found to occur later than the contralateral leg which has also been shown in the unilateral dumbbell snatch (Lauder & Lake 2008). This would suggest that during whole body exercises, holding the implement in one hand will place somewhat different demands, albeit of a modest magnitude, on the lower body even when it’s functioning bilaterally.

This study demonstrates that with training, experienced kettlebell athletes are able to sustain consistent GRF and applied force to the kettlebell over a prolonged six-minute set of the kettlebell snatch, even though the applied force over different points of the trajectory exhibited marked differences within each repetition. Interestingly, the peak applied force of the first 14 repetitions was significantly greater than the last 14 repetitions, suggesting that the kettlebell athletes were becoming fatigued at the end of the six minutes. This may be explained by the reduced hand grip strength that we observed. This supports the anecdotal evidence that grip
strength is a limiting factor within kettlebell snatch competitions. The kettlebell athlete may attempt to take advantage of the less demanding phases of the kettlebell snatch to rest their grip, so as to prolong their performance.

Within different phases of the kettlebell snatch there were marked differences in the intra-repetition kinetics. The differences in the applied force throughout the range of motion may be indicative of an efficient technique, thereby allowing for prolonged performance of the kettlebell snatch. Peak acceleration (in the upwards phase) occurred slightly after the lowest point of the trajectory, approximately after the kettlebell passed the knees. At the midpoint of the trajectory, the GRF of the upwards (838 ± 122 N) and the downwards phases (866 ± 153 N) was similar in magnitude to the body mass of the subjects (860 ± 113 N). The low GRF force in the overhead position would suggest that the bulk of the lower body’s workload takes place as the kettlebell moves from the midpoint to the end of the back swing and back to the midpoint of the kettlebell snatch. The midpoint of the snatch is similar to a swing endpoint, as the swing follows the same trajectory and is analogous to the barbell snatch pull within weightlifting. Interestingly, the end of the back swing for the kettlebell snatch has the lowest applied force of 121 ± 45 N, which is approximately half the weight force (235 N) of the 24 kg kettlebells. It has been suggested that this is one of two points (along with the overhead fixation position) of relative relaxation in the kettlebell snatch (McGill & Marshall 2012). In fixation, the arm is positioned overhead with the kettlebell resting on the back of the wrist, with the handle sitting diagonally across the palm. This position has been shown to exhibit low variability in elite kettlebell lifters (Ross et al. 2015). This low variability may promote metabolic efficiency and safety and is necessary to score a point within kettlebell sport. Following the point of relaxation at the end of the backswing, the
forward swing transitions the kettlebell past the knees where the acceleration pull occurs. The acceleration pull is the most explosive movement of the kettlebell snatch and serves a similar function to the second pull in weightlifting. Maximum acceleration occurred slightly after the lowest point suggesting it takes place as the kettlebell passes the knees during the forwards swing of the snatch. The kettlebells backwards and forwards swing in the snatch is somewhat similar to the first pull and transition phase in the weightlifting pull. As the kettlebell swings forward it is progressively accelerated, until peak acceleration when the body of the lifter is in a more advantageous position. By having peak acceleration as the kettlebell passes the knees, force may be applied more efficiently, much like the power position in the weightlifting pull (Newton 2002). The changes in the force applied to the kettlebell during its trajectory have been found to occur in conjunction with sequential muscular contraction and relaxation cycles (McGill & Marshall 2012). In addition to these rapid contraction–relaxation cycles, kettlebell sport athletes use the lockout or fixation position to briefly rest between repetitions. Controlling the kettlebell overhead will not only score a point, but it will allow the athlete to regulate their pace, with longer and shorter pauses facilitating a slower or faster pace, respectively.

CONCLUSION

In summary, the GRF and force applied to the kettlebell changes during different stages of the kettlebell snatch. In addition, the kettlebell snatch places different external demands upon the ipsilateral and contralateral legs within the AP and ML force vectors. Thus, despite the kettlebell snatch being performed with two legs, each leg may be loaded differently, thereby offering a different stimulus to each leg. There are rapid changes within the kinetics during different phases
of the lift. During the upwards phase and downwards phases there were extremely large
significant differences within GRF, kettlebell velocity and force applied to the kettlebell. Applied
force on the kettlebell of the first and last 14 repetitions at the point of maximum acceleration is
altered over the course of a prolonged set, possibly due to muscular fatigue, which is further
supported by a marked reduction in hand grip strength. The data from this investigation suggest
that the kettlebell snatch may provide a unique training stimulus, compared to other exercises
(e.g. barbell snatch).

ACKNOWLEDGMENTS

The authors would like to thank Angus McCowen for his assistance in the data analysis.
References

10.1519/jsc.0000000000000845

Medicine ACoS. 2013. *ACSM's health-related physical fitness assessment manual:* Lippincott Williams & Wilkins.

Figure 1. Typical three dimensional GRF of the ipsilateral and contralateral legs for an 87 kg athlete. A = Midpoint (down), B = Lowest point (down), C = End of backswing, D = Lowest point (up), E = Midpoint (up), x= medio-lateral, y = anterior-posterior, z = vertical.
TABLE 1. Absolute mean (SD) resultant and three dimensional GRF for the first and last 14 repetitions.

<table>
<thead>
<tr>
<th></th>
<th>First 14 repetitions</th>
<th>Last 14 repetitions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Downwards</td>
<td>Upwards</td>
</tr>
<tr>
<td>GRF (N)</td>
<td>1766</td>
<td>1775</td>
</tr>
<tr>
<td></td>
<td>(240)</td>
<td>(277)</td>
</tr>
<tr>
<td>GRF x (N)</td>
<td>47</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>(43)</td>
<td>(33)</td>
</tr>
<tr>
<td>GRF y (N)</td>
<td>308</td>
<td>299</td>
</tr>
<tr>
<td></td>
<td>(74)</td>
<td>(80)</td>
</tr>
<tr>
<td>GRF z (N)</td>
<td>1736</td>
<td>1746</td>
</tr>
<tr>
<td></td>
<td>(235)</td>
<td>(271)</td>
</tr>
<tr>
<td>Maximum acceleration (N)</td>
<td>809</td>
<td>895</td>
</tr>
<tr>
<td></td>
<td>(74)</td>
<td>(76)</td>
</tr>
</tbody>
</table>

x = medio-lateral, y = anterior-posterior, z = vertical.
TABLE 2. Mean (SD) resultant and three dimensional relative GRF (normalised to body weight (N)) for the first and last 14 repetitions.

<table>
<thead>
<tr>
<th></th>
<th>First 14 repetitions</th>
<th>Last 14 repetitions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Downwards</td>
<td>Upwards</td>
</tr>
<tr>
<td>GRF (N)</td>
<td>2.06</td>
<td>2.08</td>
</tr>
<tr>
<td></td>
<td>(0.24)</td>
<td>(0.31)</td>
</tr>
<tr>
<td>GRF x (N)</td>
<td>0.06</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td>(0.05)</td>
<td>(0.04)</td>
</tr>
<tr>
<td>GRF y (N)</td>
<td>0.36</td>
<td>0.35</td>
</tr>
<tr>
<td></td>
<td>(0.08)</td>
<td>(0.10)</td>
</tr>
<tr>
<td>GRF z (N)</td>
<td>2.03</td>
<td>2.04</td>
</tr>
<tr>
<td></td>
<td>(0.24)</td>
<td>(0.30)</td>
</tr>
</tbody>
</table>

x = medio-lateral, y = anterior-posterior, z = vertical.
TABLE 3. Mean (SD) three dimensional forces comparison of ipsilateral and contralateral with values shown as absolute values.

<table>
<thead>
<tr>
<th></th>
<th>Ipsilateral</th>
<th></th>
<th>Contralateral</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Downwards</td>
<td>Upwards</td>
<td>Downwards</td>
<td>Upwards</td>
</tr>
<tr>
<td>GRF (N)</td>
<td>897</td>
<td>936</td>
<td>939</td>
<td>949</td>
</tr>
<tr>
<td></td>
<td>(133)</td>
<td>(110)</td>
<td>(175)</td>
<td>(110)</td>
</tr>
<tr>
<td>GRF x (N)</td>
<td>34</td>
<td>46</td>
<td>59</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>(16)</td>
<td>(25)</td>
<td>(56)</td>
<td>(33)</td>
</tr>
<tr>
<td>GRF y (N)</td>
<td>165</td>
<td>164</td>
<td>154</td>
<td>146</td>
</tr>
<tr>
<td></td>
<td>(42)</td>
<td>(39)</td>
<td>(38)</td>
<td>(42)</td>
</tr>
<tr>
<td>GRF z (N)</td>
<td>885</td>
<td>905</td>
<td>939</td>
<td>942</td>
</tr>
<tr>
<td></td>
<td>(126)</td>
<td>(93)</td>
<td>(166)</td>
<td>(106)</td>
</tr>
<tr>
<td>Impulse N·s</td>
<td>380 ± 29</td>
<td>382 ± 52</td>
<td>365 ± 64</td>
<td>378 ± 63</td>
</tr>
</tbody>
</table>

x= medio-lateral, y = anterior-posterior, z = vertical.
TABLE 4. Mean (SD) three dimensional forces comparison of relative GRF (normalised to body weight N) ipsilateral and contralateral legs.

<table>
<thead>
<tr>
<th></th>
<th>Ipsilateral</th>
<th></th>
<th>Contralateral</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Downwards</td>
<td>Upwards</td>
<td>Downwards</td>
<td>Upwards</td>
</tr>
<tr>
<td>GRF (N)</td>
<td>1.07</td>
<td>1.13</td>
<td>1.11</td>
<td>1.11</td>
</tr>
<tr>
<td></td>
<td>(0.14)</td>
<td>(0.14)</td>
<td>(0.15)</td>
<td>(0.13)</td>
</tr>
<tr>
<td>GRF x (N)</td>
<td>0.04</td>
<td>0.06</td>
<td>0.08</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>(0.02)</td>
<td>(0.04)</td>
<td>(0.04)</td>
<td>(0.04)</td>
</tr>
<tr>
<td>GRF y (N)</td>
<td>0.20</td>
<td>0.20</td>
<td>0.18</td>
<td>0.16</td>
</tr>
<tr>
<td></td>
<td>(0.05)</td>
<td>(0.06)</td>
<td>(0.04)</td>
<td>(0.03)</td>
</tr>
<tr>
<td>GRF z (N)</td>
<td>1.04</td>
<td>1.08</td>
<td>1.07</td>
<td>1.08</td>
</tr>
<tr>
<td></td>
<td>(0.13)</td>
<td>(0.19)</td>
<td>(0.13)</td>
<td>(0.12)</td>
</tr>
<tr>
<td>Impulse N·s</td>
<td>0.42</td>
<td>0.45</td>
<td>0.44</td>
<td>0.43</td>
</tr>
<tr>
<td></td>
<td>(0.50)</td>
<td>(0.05)</td>
<td>(0.05)</td>
<td>(0.05)</td>
</tr>
</tbody>
</table>

x = medio-lateral, y = anterior-posterior, z = vertical.
TABLE 5. Mean (SD) temporal measures of applied force, resultant velocity and resultant GRF of the downwards phase.

<table>
<thead>
<tr>
<th>Relative time</th>
<th>Applied Force</th>
<th>Resultant velocity</th>
<th>Resultant Bilateral GRF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highest point overhead</td>
<td>- 1.72 (0.49)</td>
<td>222 (15)^++</td>
<td>0.28 (0.22)^++</td>
</tr>
<tr>
<td>Midpoint</td>
<td>-0.60 (0.04)</td>
<td>284 (53)^++</td>
<td>3.62 (0.21)^‡</td>
</tr>
<tr>
<td>Peak resultant velocity</td>
<td>-0.53 (0.05)</td>
<td>466 (69)^++</td>
<td>3.81 (0.21)</td>
</tr>
<tr>
<td>Maximum acceleration</td>
<td>-0.40 (0.04)</td>
<td>814 (75)</td>
<td>3.23 (0.27)^++</td>
</tr>
<tr>
<td>Peak resultant GRF</td>
<td>-0.34 (0.11)</td>
<td>775 (73)</td>
<td>3.08 (0.29)</td>
</tr>
<tr>
<td>Lowest point</td>
<td>-0.31 (0.04)</td>
<td>694 (79)^#</td>
<td>2.69 (0.34)^+</td>
</tr>
<tr>
<td>End of the back swing</td>
<td>0.00 (0.00)</td>
<td>127 (43)^+</td>
<td>0.21 (0.08)^++</td>
</tr>
</tbody>
</table>

The effect was trivial unless otherwise stated.

^Significantly (p<0.0001) < Peak value
§Small ESD (0.2-0.6)
‡ moderate ESD (0.6-1.2)
large ESD (1.2-2.00)
 Very large ESD (2.0-4.0)
 + Extremely large ESD (> 4.00)
TABLE 6. Mean (SD) temporal measures of applied force, resultant velocity and resultant GRF during the upwards phase.

<table>
<thead>
<tr>
<th></th>
<th>Relative time (s)</th>
<th>Applied Force (N)</th>
<th>Resultant velocity (m/s)</th>
<th>Resultant Bilateral GRF (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>End of the back swing</td>
<td>0.00 (0.00)</td>
<td>127 (43)†+</td>
<td>0.21 (0.08)†+</td>
<td>940 (169)†+</td>
</tr>
<tr>
<td>Lowest point</td>
<td>0.32 (0.05)</td>
<td>788 (112)‡†</td>
<td>2.90 (0.37)‡+</td>
<td>1701 (320)‡§</td>
</tr>
<tr>
<td>Peak resultant GRF</td>
<td>0.33 (0.05)</td>
<td>798 (81)‡†</td>
<td>2.89 (0.52)‡*</td>
<td>1768 (242)</td>
</tr>
<tr>
<td>Maximum acceleration</td>
<td>0.39 (0.04)</td>
<td>885 (86)</td>
<td>3.51 (0.29)‡*</td>
<td>1634 (289)‡§</td>
</tr>
<tr>
<td>Peak resultant velocity</td>
<td>0.51 (0.05)</td>
<td>596 (62)‡*</td>
<td>4.16 (0.23)</td>
<td>1095 (164)‡*</td>
</tr>
<tr>
<td>Midpoint</td>
<td>0.60 (0.04)</td>
<td>314 (38)‡+</td>
<td>3.82 (0.20)‡#</td>
<td>838 (122)‡+</td>
</tr>
</tbody>
</table>

The effect was trivial unless otherwise stated.

†Significantly (p<0.0001) < Peak
‡Small ESD (0.2-0.6)
‡‡moderate ESD (0.6-1.2)
‡§large ESD (1.2-2.00)
*Very large ESD (2.0-4.0)
+extremely large ESD (> 4.00)