C. pneumoniae strains in snakes; genome sequencing underway

Summary

- **Genome of novel uncultivable Chlamydia sp. characterised - first reptilian host**
 - Shotgun deep sequencing approach
 - 1.1Mbp chromosome & 7.5Kbp plasmid
 - Expanded pmp & omp repertoire
 - Lack of “traditional” plasticity zone

- **Chlamydia virulence factors**
 - Inclusion membrane proteins (IncS)
 - 41 predicted
 - Polymorphic membrane proteins (Pmps)
 - Highly variable
 - Frameshift mutations
 - May promote antigenic diversity
 - T3SS effectors

Results

The genome of Chlamydia sp. 2742-308 does not appear to contain a “traditional” plasticity zone

- **Region of extensive variation between chlamydial genomes**
 - Described in all species of Chlamydia
 - ~12 kbp to ~86 kbp; 11 to 48 genes
 - Only features present in Chlamydia sp. 2742-308 - accB & accC (Figure 3)
 - Incomplete trp operon
 - No guaA+add operon for purine biosynthesis

Results: Genomic characterisation of a novel Chlamydia sp.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Chromosome length (Mbp)</td>
<td>1.11</td>
<td>1.12</td>
<td>1.11</td>
<td>1.17</td>
<td>1.07</td>
<td>1.04</td>
<td></td>
</tr>
<tr>
<td>GC content (%)</td>
<td>38.5</td>
<td>40.5</td>
<td>41.1</td>
<td>39.1</td>
<td>40.3</td>
<td>41.3</td>
<td></td>
</tr>
<tr>
<td>No. CDSs</td>
<td>996</td>
<td>1097</td>
<td>945</td>
<td>1003</td>
<td>904</td>
<td>911</td>
<td></td>
</tr>
<tr>
<td>Hypothetical proteins</td>
<td>314</td>
<td>402</td>
<td>297</td>
<td>377</td>
<td>353</td>
<td>294</td>
<td></td>
</tr>
<tr>
<td>Plasmid length (Kbp) (No. ORFs)</td>
<td>7.5 (8)</td>
<td>7.5 (8)</td>
<td>7.5 (8)</td>
<td>7.5 (8)</td>
<td>7.5 (8)</td>
<td>7.5 (8)</td>
<td></td>
</tr>
</tbody>
</table>

Initial case results: Chlamyrial diversity & genotype distribution

Aims: Characterise the chlamydial diversity of captive snakes in Switzerland; expand our knowledge of chlamydial biology

Initial case background & methods

- **5 mortalities in one owner’s snake collection**
- **Additional case:** Chlamydial septicaemia (Ruegg et al., 2015)
- **6 owner’s collections**
- **Choana and cloaca swabs**
- **16S rRNA gene sequencing**
- **Bioinformatics analysis**

Further sampling (87 animals):

- **Choana and cloaca swabs**
- **6 owner’s collections**

Screened for Chlamydialles:

- **AmyTube, qPCR**
- **1 snake – Chlamydial septicemia (Ruegg et al., 2015)**
- **41 predicted strains**
- **1 snake – Chlamydial septicaemia (Ruegg et al., 2015)**

Genomic study: methods

- **DNA extracted from a choana swab (genotype 4; 2742-308)**
- **Host methylated DNA depletion**
- **Multiple displacement amplification**
- **Whole genome sequencing**
- **Illumina MiSeq: 150 bp PE reads**
- **De novo assembly (SPAdes)**
- **Bioinformatic analysis**

Results: Comparative analysis of chlamydial genome features.

1. **Genome of novel uncultivable Chlamydia sp.**
2. **Uncultured C. pneumonia**
3. **C. pneumonia**
4. **C. pneumonia**
5. **C. pneumonia**
6. **C. pneumonia**
7. **C. pneumonia**
8. **C. pneumonia**
9. **C. pneumonia**
10. **C. pneumonia**
11. **C. pneumonia**
12. **C. pneumonia**
13. **C. pneumonia**
14. **C. pneumonia**
15. **C. pneumonia**
16. **C. pneumonia**
17. **C. pneumonia**
18. **C. pneumonia**
19. **C. pneumonia**
20. **C. pneumonia**
21. **C. pneumonia**
22. **C. pneumonia**
23. **C. pneumonia**
24. **C. pneumonia**
25. **C. pneumonia**
26. **C. pneumonia**
27. **C. pneumonia**
28. **C. pneumonia**
29. **C. pneumonia**
30. **C. pneumonia**
31. **C. pneumonia**
32. **C. pneumonia**
33. **C. pneumonia**
34. **C. pneumonia**
35. **C. pneumonia**
36. **C. pneumonia**
37. **C. pneumonia**
38. **C. pneumonia**
39. **C. pneumonia**
40. **C. pneumonia**
41. **C. pneumonia**

Table 2: Comparative analysis of chlamydial genome features. One strain representative for each species was analysed (modified from Taylor-Brown et al., 2016, BMC Genomics).

<table>
<thead>
<tr>
<th>Species</th>
<th>Accession number</th>
<th>Chromosome length (Mbp)</th>
<th>GC content (%)</th>
<th>No. CDSs</th>
<th>Hypothetical proteins</th>
<th>Plasmid length (Kbp) (No. ORFs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. pneumonia</td>
<td></td>
<td>7.5 (8)</td>
<td>7.5 (8)</td>
<td>7.5 (8)</td>
<td>7.5 (8)</td>
<td>7.5 (8)</td>
</tr>
</tbody>
</table>

Figure 1: Phylogenetic tree depicting relationships between novel 16S rRNA genotypes (depicted by green boxes) and related chlamydial lineages.

Figure 2a: Cytoskeleton representation of the Chlamydia sp. 2742-308 plasmid.

Figure 3: Region of the genome encoding the plasticity zone in C. pecorum and C. pneumoniae were compared to that of Chlamydia sp. 2742-308 via tBLASTn analysis and their arrangement plotted in EasyFig. Black arrows represent proteins, coded by colour and grey shading represents sequence homology.

Table 1: Genotype designation and distribution for 16S rRNA gene sequences obtained from choana and cloaca swabs from captive snakes in Switzerland (Taylor-Brown et al., 2015, Vet Rec: 178). Green box depicts the novel Chlamydia sp. selected for genome sequencing.

<table>
<thead>
<tr>
<th>Owner Sample</th>
<th>Anatomical site</th>
<th>Snake species</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Choana</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Cloaca</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>Choana</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>Cloaca</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>Cloaca</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>Choana</td>
<td>6</td>
</tr>
</tbody>
</table>

Table 2: Comparative analysis of chlamydial genome features. One strain representative for each species was analysed (modified from Taylor-Brown et al., 2016, BMC Genomics).

<table>
<thead>
<tr>
<th>Species</th>
<th>Accession number</th>
<th>Chromosome length (Mbp)</th>
<th>GC content (%)</th>
<th>No. CDSs</th>
<th>Hypothetical proteins</th>
<th>Plasmid length (Kbp) (No. ORFs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. pneumonia</td>
<td></td>
<td>7.5 (8)</td>
<td>7.5 (8)</td>
<td>7.5 (8)</td>
<td>7.5 (8)</td>
<td>7.5 (8)</td>
</tr>
</tbody>
</table>