Health Care for Women International

Satisfaction of Basic Psychological Needs, Self-Determined Exercise Motivation, and Psychological Wellbeing in Mothers Exercising in Group-Based Versus Individual-Based Contexts

Geoff P. Lovella, James A.R. Gordona, Marcus B. Muellerb, Kate Mulgrewa & Rachael Sharmana

a School of Social Sciences, University of the Sunshine Coast, Maroochydore, Queensland, Australia
b Department of Management, Sacred Heart University, Luxembourg

Accepted author version posted online: 07 Aug 2015.

To cite this article: Geoff P. Lovell, James A.R. Gordon, Marcus B. Mueller, Kate Mulgrew & Rachael Sharman (2015): Satisfaction of Basic Psychological Needs, Self-Determined Exercise Motivation, and Psychological Wellbeing in Mothers Exercising in Group-Based Versus Individual-Based Contexts, Health Care for Women International, DOI: 10.1080/07399332.2015.1078333

To link to this article: http://dx.doi.org/10.1080/07399332.2015.1078333

Disclaimer: This is a version of an unedited manuscript that has been accepted for publication. As a service to authors and researchers we are providing this version of the accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proof will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to this version also.

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any
Satisfaction of Basic Psychological Needs, Self-Determined Exercise Motivation, and Psychological Wellbeing in Mothers Exercising in Group-Based Versus Individual-Based Contexts

Geoff P. Lovell and James A.R. Gordon
School of Social Sciences, University of the Sunshine Coast, Maroochydore, Queensland, Australia

Marcus B. Mueller
Department of Management, Sacred Heart University, Luxembourg

Kate Mulgrew and Rachael Sharman
School of Social Sciences, University of the Sunshine Coast, Maroochydore, Queensland, Australia

Abstract
We compared mothers who exercised predominantly in group settings, those that exercised predominantly in individual settings, and those that exercised equally in group and individual contexts upon: (a) satisfaction of basic psychological needs (autonomy, competence, and relatedness); (b) self-determined exercise motivation; and (c) psychological wellbeing.
With clear implications for mothers’ exercise interventions we found that exercising either predominantly in group contexts or in mixed group and individual settings, was associated with mothers having significantly higher satisfaction of basic psychological needs and self-determined exercise motivation than those exercising predominantly alone.

Received 10 Jan 2014; accepted 28 Jul 2015.

Address correspondence to Geoff P. Lovell, School of Social Sciences, University of the Sunshine Coast, Locked Bag 4, Maroochydore, QLD 4558, Australia. E-mail: glovell@usc.edu.au
Motherhood is a complex and often a challenging transition period for women including hormonal changes, social changes including increased social isolation, loss of identity, actual and perceived negative changes in body image (e.g., Ashworth & Nobile, 2007; Kendall-Tackett, 2005; Marshall & Thompson, 2014). Research also suggests that motherhood is associated with role-over load (Lovell & Butler, 2014), weight retention (Gore, Brown, & West, 2003), changes in sleep patterns (Bayer, Hiscock, Hampton, & Wake, 2007), fatigue (Dritsa, Da Costa, Dupuis, Lowensteyn, & Khalifé, 2008), and variation of daily routine (Mottola & Campbell, 2003). With these challenges and changing roles, depression during and after pregnancy is a major issue (Lewis & Kennedy, 2011; Lovell, Huntsman, & Hedley-Ward, 2014). While exercise is often lauded as an effective tool for enhancing psychological wellbeing (Davis & Dimidjian, 2012; Ekkekakis & Backhouse, 2009) and reducing the psychosocial impact of challenges faced by mothers (Daley, Jolly, & MacArthur, 2009; Dritsa, et al., 2008), the mechanisms by which exercise helps and how to supports mothers’ motivation to exercise is not well understood. Our research into how mothers’ exercise contexts relate to their motivation to exercise, as well as psychological outcomes, was with the intention that our findings would help practitioners better design exercise programs to more successful facilitate exercise adherence and ameliorate the challenges of motherhood.

Background

Exercise is considered a cost effective treatment for poor mental health with limited negative side-effects (Biddle & Mutrie, 2008). However, although exercise appears a well
justified activity, motherhood represents a major barrier to being physically active (Bellows-Riecken & Rhodes, 2008). Research suggests two thirds of women do not exercise to adequate levels and that women with children exercise even less than women without children (Brown, Mishra, Lee, & Bauman, 2000). Ansari and Lovell (2009) observed that almost one third of women’s perceived barrier to exercise was accounted for by the number of children she had. Albright, Maddock, and Nigg (2005) further report that only 35% of women who were active before childbirth were active after childbirth. This is despite Currie and Develin’s (2002) finding that 69% of women in the postnatal period indicated that they would like to exercise more.

Understanding why mothers generally do not engage in sufficient exercise is clearly complex with multiple personal, interpersonal, environmental, and policy determinants (King et al., 2000). Research that furthers our understanding of how such factors affect mothers’ exercise behavior has clear potential to better inform exercise promotion interventions thus supporting positive public health outcomes; both physiological and psychological. However, while our understanding of antecedents of exercise behavior for general populations has substantially developed over the last decade, our understanding for special populations such as mothers remains limited (Ansari & Lovell, 2009; Daley, 2008). One exercise antecedent that requires further investigation to facilitate the efficacious design of strategies to promote mothers’ exercise is exercise motivation and how this motivation may be differentially affected by different exercise contexts such as exercising alone or in groups. Furthermore, while exercise is associated with positive psychological wellbeing outcomes, our understanding of the mechanisms responsible are also limited (Daley, 2008). As with the hiatus in knowledge regarding mothers’ exercise antecedents, our understanding of how exercise, incorporating different formats and
contexts, relate to psychological wellbeing outcomes is also particularly lacking for the specific population of mothers (Kull, Ainsaar, Kiive, & Raudsepp, 2012).

In response to the limited understanding of how different exercise contexts are associated with exercise antecedents such as motivation and exercise outcomes such as psychological wellbeing, we developed this current investigation. With specific reference to mothers, we contrasted mothers’ levels of exercise motivation, satisfaction of basic psychological needs (considered a mediator of motivation and psychological wellbeing), and psychological wellbeing between the contexts of exercising alone or within groups.

Theoretical Framework

The theoretical framework of this investigation was Self-Determination Theory (SDT; Deci & Ryan 1985, 2000, 2002) and its sub-theory Basic Needs Theory (BNT; Ryan & Deci, 2000) which contends that humans function and develop effectively as a consequence of the social environment and its potential to satisfy basic psychological needs. According to BNT, humans have three basic psychological needs: autonomy; competence; and relatedness (Deci & Ryan, 2000; Ryan & Deci, 2000). The inherent need for autonomy is fulfilled when people perceive that they are the origin of their choices and decisions and that they are acting in accordance with their integrated sense of self. Competence concerns an individual’s need to feel a sense of mastery through effective interaction within their environment. The third need, relatedness, corresponds to feeling securely attached to and being respected by significant others. Satisfaction of these psychological needs is assumed to directly enhance motivation as well as psychological and physical wellbeing (Deci & Ryan, 2000). When basic psychological needs are
thwarted however, ill being is posited to ensue (Ryan & Deci, 2000). Thus, if exercise is constructed in such a way such that it provides: a sense of control in terms of choice to participate and what that modality of exercise may be (autonomy); a perception of competence through generation of feedback related to positive progress towards goals (competence); and facilitates a sense of belonging through exercising in a group or team (relatedness), motivation to exercise and psychological wellbeing should be enhanced.

Potentially, individual exercise settings may increase mothers’ perceived autonomy compared to group situations as she may have greater control over deciding specifics of the exercise bout as would not be required to negotiate content with co-exercisers. However, group contexts may be associated with increased perceived competency through increased feedback from co-exercisers through verbal feedback and via direct comparison. Furthermore, group exercise contexts may enhance mothers’ perceived relatedness due to the increased potential for social interaction and connectedness compared to when exercising alone. Therefore, according to the premises of SDT, exercising alone has the potential for greater satisfaction of autonomy needs compared to exercising in a group. However, group exercise may promote the satisfaction of competence and relatedness basic psychological needs, outweighing the contribution to autonomy satisfaction facilitated by individual based exercise, in turn enhancing self-determined motivation for exercise and psychological wellbeing. No prior studies have utilized SDT to directly examine group versus individual exercise contexts in mothers.

While only very limited research has compared group and individual exercise contexts in mothers (none using SDT as a theoretical framework), research has examined mothers exercise interventions such as pram walking groups (Armstrong & Edwards, 2003, 2004) focusing upon
social support aspects (Fjeldsoe, Miller, & Marshall, 2010; Miller, Trost, & Brown, 2002).

Interestingly, one underlying characteristic of many of these interventions is the ‘group’ aspect. Accordingly Norman, Sherburn, Osbourne, and Galea (2010) found that mothers suffering from post-natal depression experienced improvements in symptoms after completion of only one group exercise session per week compared to a control. Armstrong and Edwards (2003, 2004) found that mothers with post-natal depression were fitter and had less symptoms of depression after pram walking interventions compared to controls. Currie (2004) performed a qualitative assessment on a 12 week exercise class intervention and found the majority of mothers experienced a decrease in stress and an increase in psychological wellbeing. In comparison, home-based exercise interventions (typically performed alone) have demonstrated inconsistent results (e.g., Da Costa et al., 2009; Dritsa, et al., 2008), while possibly due to several factors, but including limited satisfaction of basic needs such as perceived relatedness compared to that developed by group based programs. However, such previous research did not directly examine the role that these exercise contexts played in satisfying basic psychological needs, thus limiting our ability to substantiate such suggestions.

Research Aims

In response to the limitations in previous research, using SDT as the theoretical framework, we addressed three research aims. These aims were to compare mothers who exercised predominantly in group settings, those that exercised predominantly in individual settings, and those that exercised equally in group and individual contexts upon: (a) satisfaction
of basic psychological needs (autonomy, competence, and relatedness); (b) self-determined exercise motivation; and (c) psychological wellbeing.

Method

Design

To conduct this research we utilized a cross-section survey design.

Participants and Recruitment

Following institutional ethical approval and informed consent 231 mothers (\(M_{\text{age}} = 29.1, SD = 9.5\)) from the Sunshine Coast region (Queensland, Australia) completed a survey offered both online and in paper format (85% completion rate). Mothers were eligible for inclusion if they: (a) were exercising at least once a week and that exercise was intended to expend energy; (b) had been exercising for at least four weeks prior to filling out a survey; (c) were at least 18 years old; (d) their youngest child was five years old or younger; and (e) were currently free from any mental health diagnosis or intellectual disability.

Participants were recruited via three methods. The three methods were used in order to maximize the number of participants in the study to increase external validity. The first method was in person at a number of exercise facilities and gymnasiums on the Sunshine Coast (Queensland, Australia). Potential participants were approached by a researcher, informed of the research aims and what their involvement would entail, and then asked whether they would like to participate. If the participants agreed, they were handed a written link to the online survey (SurveyMonkey) as well as a hardcopy of the survey; participants could then either complete
there and then, in their own time, or online. Participants were also recruited via posters on noticeboards at the different exercise facilities and public noticeboards. In this instance participants could also take a hardcopy of the survey, a copy of the link that had been provided, or contact one of the researchers. An additional recruitment method was via the internet with web-based announcements on various mother and child forums direction potential participants to the online survey via a posted link. Reflecting the challenges of recruiting mothers, usually associated with being time-poor and with multiple conflicting roles (see Lovell & Butler, 2014), the majority of the surveys were completed via hardcopy (68%) facilitated by face-to-face contact with the research team at the places of exercise. We believe that the final sample size is well justified based upon the challenges of recruiting such a specific sample of mothers, for whom to a large extent this research was low on their long list of priorities.

Based on self-report, participants were classified into one of three exercising contexts: predominantly group exercise context ($n = 60$); mixed-exercise context ($n = 42$); or predominantly individual exercise context ($n = 129$). The group exercise context was defined as exercise that was completed simultaneously with others (e.g., an aerobics class) whereas individual based exercise was defined as any exercise completed alone (e.g., running alone or going to gym by oneself). Participants were categorized into the group exercise context if they exercised in group exercise contexts more times per week than they exercised in individual exercise contexts. Participants in the mixed-exercise context exercised equal times in group and individual exercise settings per week. Participants in the individual exercise context exercised more times per week in an individual setting than group settings.
Materials

The survey completed by the participants consisted of demographic information (age, age of youngest child, working status, relationship status, how long they had been exercising prior to the investigation) as well as measures assessing satisfaction of the basic psychological needs, self-determined exercise motivation, and psychological wellbeing.

Satisfaction of basic psychological needs. Satisfaction of the basic psychological needs was be measured by the Basic Psychological Needs in Exercise Scale (BPNES: Vlachopoulos, Ntoumanis, & Smith, 2010). The BPNES is an 11-item scale measuring the satisfaction of the three basic psychological needs in an exercise context: autonomy (e.g., “The way I exercise is in agreement with my choices and interests”); competence (e.g., “I feel I perform successfully the activities of my exercise program”); and relatedness (e.g., “My relationships with the people I exercise with are close”). Responses are made on a 5-point Likert scale, ranging from 1 (*I don’t agree at all*) to 5 (*I completely agree*). The BPNES is reported to be valid and reliable with Cronbach α of .75, .80, and .86 for autonomy, competence, and relatedness respectively (Vlachopoulos, et al., 2010).

Self-determined exercise motivation. To assess self-determined exercise motivation we used the Behavioral Regulation in Exercise Questionnaire (BREQ-2: Markland & Tobin, 2004). Using a 5-point Likert scale ranging from 0 (*not true for me*) to 4 (*very true for me*), the BREQ-2 is a 19-item scale that measures the degree to which an individual’s motivational regulations in exercise are amotivational, external, introjected, identified, and intrinsic (respective Cronbach α .83, .79, .80, .73, .86). Higher positive scores for the RAI indicate more autonomous motivation whereas lower negative scores indicate less autonomous motivation; maximum possible score
when applying this formula to the BREQ-2 is 20 and the minimum is -24. Cronbach α of the BREQ-2 scales for the current sample ranged from .81 to .89. As per Markland (see Wilson, Sabiston, Mack, & Blanchard, 2012), weighted subscales of the BREQ-2 (amotivational = –3, external = –2, introjected = –1, identified = 2, intrinsic = 3) were summed to form a single measure of self-determined exercise motivation titled relative autonomy index (RAI).

Psychological wellbeing. Psychological wellbeing, despite being a popularly used term, is a multi-faceted concept that is difficult to operationalise; each approach with different limitations and merits (Keyes, Shmotkin, & Ryff, 2002). While our understanding of what psychological wellbeing is has developed greatly over the last decade, previous research has been variable in their definitions of exactly what has been measured. For the current investigation, we adopted the perspective of Keyes (2005) that psychological wellbeing consists of two related but separate dimensions: Mental health and mental illness. That is, psychological wellbeing is not merely the absence of mental illness, but also includes the present of mental health. In the current investigation, to assess the negative aspect of psychological wellbeing (mental illness) we used the Depression, Anxiety, and Stress Scale-21 (DASS-21: Lovibond & Lovibond, 1995). We used the Satisfaction with Life Scale (SWLS: Diener, Emmons, Larsen, R, & Griffin, 1985) to assess positive aspect of psychological wellbeing (mental health).

The DASS-21 is a 21-item scale measuring feelings of depression, anxiety, and stress in the past week scored on a 4-point severity scale, ranging from 0 (*did not apply to me*) to 3 (*applied to me very much or most of the time*) with adequate Cronbach’s alpha internal consistencies of .88, .82, .90, and .93 respectively. Summing the entire 21 items of the scale and multiplying by 2 has been reported to be a valid and reliable measure of general psychological wellbeing.
distress (GPD; Lovibond & Lovibond, 1995) and equivalent to the long form DASS (Henry & Crawford, 2005). The SWLS is a 5-item scale that asks participants questions about their satisfaction with their life (e.g., “In most ways my life is close to ideal”). Responses are made on a 5-point Likert scale, ranging from 0 (strongly disagree) to 4 (strongly agree). The SWLS has been reported to be valid and reliable, with a Cronbach α of .80 (Diener, et al., 1985).

Data Analysis

Dependent upon whether participants hand completed hardcopies or the online version of the survey, data were either downloaded from the online survey platform or entered manually by a member of the research team. To check for accuracy of data input from hardcopy surveys, 10% of the inputted data were audited by a research team member that did not input the data. Mothers’ classification of exercise context (individual, group, or mixed) was the independent variable. The mothers’ exercise context groups were then contrasted upon the dependent measures regarding satisfaction of basic psychological needs (BPNES autonomy, competence, and relatedness), self-determined exercise motivation (RAI), and psychological wellbeing (GPD and SWLS).

Although there were unequal sample sizes across the three participant groups, for all statistical analyses we used IBM SPSS version 22 (SPSS, Chicago, IL, USA) which in its calculation of MANOVA adjusts for such differences (Method 1, SSTYPE 3) and one-way ANOVA is considered robust against such challenges (Tabachnick & Fidell, 2013).

Results
Age, age of youngest child, working status, relationship status, how long they had been exercising prior to the investigation characteristics of the mothers across the three exercising contexts are presented in Table 1.

Table 2 presents means, standard deviations, and Cronbach α’s for each of the dependent variables. It is worthy of note that reflecting that the sample was currently exercising, the participants’ mean RAI exercise motivation score was relatively high; 12.44 on a possible -24 to 20 scale. Furthermore, while expected as the sample were mothers, the participants’ mean DASS-21 general psychological distress scores were higher than reported Australian female adult norms (Crawford, Cayley, Lovibond, Wilson, & Hartley, 2011), but again likely to be reflective of their exercising status, their scores were not significantly higher (one sample t-test; \(t(230) = .939, p = .349 \)).

Results of one-way MANOVA testing for differences in satisfaction of basic psychological needed (autonomy, competence, and relatedness) demonstrated a significant exercise context main effect, Wilks’ Lambda = .913 \(F(6, 452) = 3.52, p < .01, \eta^2_p = .045 \). Subsequent univariate F-tests revealed significant effects for autonomy \(F(2, 228) = 9.41, p < .001, \eta^2_p = .076 \), competence \(F(2, 228) = 9.59, p < .001, \eta^2_p = .078 \), and relatedness \(F(2, 228) = 3.14, p < .05, \eta^2_p = .030 \). Post hoc LSD tests for each dependent variable demonstrated similar trends although strongest for autonomy and competence with medium effect sizes; the group exercise context and the mixed exercise context were almost identical, both having significantly higher scores than the individual context.

Results of one-way ANOVA testing for differences in self-determined exercise motivation (RAI) also demonstrated a significant exercise context effect with medium effect size
$F(2, 228) = 8.32, p < .001, \eta^2_p = .068$. Post hoc LSD tests showed the group exercise context and the mixed exercise contexts to have significantly greater self-determined motivation than the individual exercise context.

Results to the third one-way MANOVA testing for differences in psychological wellbeing (general psychological distress and satisfaction with life) showed there to be no significant differences between the exercise context groups Wilks’ Lambda = .970 $F(4, 454) = 1.75, p = .138, \eta^2_p = .015$.

Although there were unequal sample sizes across the three participant groups, for all statistical analyses we used IBM SPSS version 20.0 (SPSS, Chicago, IL, USA) which in its calculation of MANOVA adjusts for such differences (Method 1, SSTYPE 3) and one-way ANOVA is considered robust against such challenges (Tabachnick & Fidell, 2013).

Discussion

Adopting SDT as the theoretical framework, the current investigation aimed to assess whether exercising in group contexts as opposed to individual exercise contexts was associated with differential effects upon satisfaction of basic psychological needs, self-determined exercise motivation, and psychological wellbeing. Our results demonstrated that exercising either predominantly in groups or equally in group and individual contexts were associated with significantly and meaningfully greater satisfaction of autonomy, competency, and relatedness basic psychological needs as compared to predominantly exercising alone.

While comparing our findings to previous research is difficult due to the absence of such investigations, our effects fit well with SDT and with previous findings from related areas of
investigation; for example Burke, Carron, and Shapcott, (2008) reported that women prefer to exercise in contexts where safety and procedural knowledge of the exercise is overseen by a professional and by other group members. According to SDT (Deci & Ryan, 1991) this structure allows for greater satisfaction of the need for competency. While our results are in accordance with SDT theoretical perspectives and compliment finding from previous related research, our findings are novel for the special population of mothers.

In regards to the satisfaction of the need for autonomy, according to the literature group environments can support this need satisfaction or thwart it. Burke et al. (2008) highlight the potential controlling nature of group exercise contexts and thus the potential for reduced perceived autonomy; however it appears that from the mothers sampled in this investigation that the group environments were autonomy supportive. An explanation of this effect is due to the mothers’ roles within the family. Mothers’ consistently report feelings of obligation to support the needs of their children, husband, and family; subsequently frequently reporting not having time for themselves or their own pursuits (Miller & Brown, 2005). It may be that mothers have low levels of autonomy in general and by electing to engage in group exercise, which for the majority is at a certain time and location, that they re-establish some independence and individuality (Currie, 2004), thus promoting satisfaction of autonomy needs. Individual exercise, although has been noted with fewer barriers i.e., travelling to exercise, may reduce autonomy as mothers adapt their individual exercise routines to suit children’s and families feeding and sleeping habits. Electing to partake in group exercise thus might be instrumental in satisfying mother’s need for autonomy.
Our findings that satisfaction of competency and relatedness needs was higher for the mothers classified as predominantly exercising in groups or exercising equally in group setting as alone does concur with predictions from SDT. Intuitively group exercise would be linked to higher relatedness due to the increased socialization. With regards to how the group context promoted satisfaction of competence needs, we propose that the group environment facilitates the generation of feedback related to positive progress towards goals (competence); both via verbal feedback from co-exercisers and instructor, as well as via direct comparison. However, further research, ideally qualitative in design, is needed to substantiate the validity of such a contention.

In terms of how self-determined exercise behavior varied across the exercise context classifications, this investigation clearly suggests that exercising predominantly in groups, or equally in groups and alone, is associated with greater levels of self-determination exercise motivation than when exercising predominantly alone. This very important finding regarding mothers’ exercise motivation is again supported by tenants of SDT in that greater need satisfaction leads to greater levels of self-determined motivation. The group exercise contexts facilitated autonomy, competency, and relatedness support which would be expected to enhance satisfaction of basic psychological needs and subsequently enhance self-determined motivation (Deci & Ryan, 2000; Ryan & Deci, 2000). Our finding that exercise motivation was higher for the mothers with higher incidences of group exercise is in agreement with previous research reporting greater adherence to exercise in people that exercise in group contexts (Burke, et al., 2006; Cox, Burke, Gorely, Beilin, & Puddey, 2003; Hong, Hughes, & Prohaska, 2008).
Regarding exercise context and psychological wellbeing, there were no differences between the exercise context groups on negative affect or subjective wellbeing. The results support previous findings that there appear to be no differential benefits to psychological wellbeing associated with different exercise contexts (Blumenthal, Babyak, Doraiswamy, Watkins, Hoffman, & Barbour, 2007; Karapolat, Akkoc, Sar, Eyigor, Akar, & Kirazli, 2007; Segal, Evans, Johnson, Smith, Colletta, & Gayton, 2001). An explanation of our finding of no difference in psychological wellbeing between the exercise contexts is that the majority of the participants in the sample were completing some form of exercise and this was sufficient to develop equivalent levels of psychological wellbeing across the exercise settings. Supporting this explanation was the fact that the combined measure of the DASS-21 revealed a floor effect, suggesting that the majority of participants had good psychological health. This effect is noted as a potential consequence of analyzing non-clinical samples (Netz, Wu, Becker, & Tenenbaum, 2005).

Our investigation does however have limitations including that potential exercise type (e.g., aerobic versus resistance training) effects were not controlled. Our rationale for electing not to measure this variable was the decision to capture a broad sample of different activities while limiting the survey to an acceptable length to avoid questionnaire fatigue and increase participant recruitment. Additionally, we predominantly examined exercising mothers; while our findings do provide useful insight regarding exercising mothers, these results may not be generalizable to women in earlier stages of exercise behavior change or different life span development stages (e.g., not mothers of under five years olds). Further research should consider
these limitations as well as adopting qualitative methodologies to investigate how mothers regard different exercise contexts affect their satiation of basic psychological needs.

In conclusion, with reference to our first two research questions we found that mothers who exercised predominantly in group settings and those who exercised equally in group and individual contexts experienced significantly and meaningfully (medium effect sizes) higher satisfaction of autonomy and competence basic psychological needs and self-determined exercise motivation than those exercising predominantly in individual settings. There was a small significant effect in terms of relatedness needs satisfaction with the mothers exercising in individual contexts demonstrating the lowest levels. With regard to research question 3 we found no significant differences in psychological wellbeing between the different mother exercise context groups. The clear implication of this research is the value of mothers’ exercise interventions based around group exercise settings to increase their motivation to exercise. Additionally these results help provide a theoretical (SDT) and evidence based for the efficacious design of exercise promotion interventions to facilitate associated psychological and physical wellbeing outcomes.
References

Table 1

Participant Characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Predominantly group</th>
<th>Mixed</th>
<th>Predominantly individual</th>
<th>Complete sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>60</td>
<td>42</td>
<td>129</td>
<td>231</td>
</tr>
<tr>
<td>Age (yrs)</td>
<td>26.8 (10.2)</td>
<td>28.3 (9.1)</td>
<td>30.4 (9.2)</td>
<td>29.1 (9.5)</td>
</tr>
<tr>
<td>Age of youngest child (yrs)</td>
<td>2.6 (1.6)</td>
<td>2.2 (1.5)</td>
<td>2.0 (1.4)</td>
<td>2.2 (1.5)</td>
</tr>
<tr>
<td>Work status</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full-time (%)</td>
<td>16.7</td>
<td>33.3</td>
<td>28.7</td>
<td>26.4</td>
</tr>
<tr>
<td>Part-time (%)</td>
<td>53.3</td>
<td>33.3</td>
<td>32.6</td>
<td>38.1</td>
</tr>
<tr>
<td>Not working (%)</td>
<td>30.0</td>
<td>33.3</td>
<td>38.8</td>
<td>35.5</td>
</tr>
<tr>
<td>Relationship status</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Married / defacto (%)</td>
<td>87.6</td>
<td>86.0</td>
<td>84.4</td>
<td>85.5</td>
</tr>
<tr>
<td>Single (%)</td>
<td>12.5</td>
<td>14.0</td>
<td>15.6</td>
<td>14.5</td>
</tr>
</tbody>
</table>
Table 2

Means, Standard Deviations, and Cronbach Alpha’s for Basic Psychological Needs in Exercise Scale (BPNES), Relative Autonomy Index (RAI), General Psychological Distress (GPD), and Satisfaction with Life Scale (SWLS)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>α</th>
<th>Predominantly group</th>
<th>Mixed</th>
<th>Predominantly individual</th>
<th>Complete sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>BPNES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autonomy**</td>
<td>0.85</td>
<td>4.09 (0.75)</td>
<td>4.12 (0.74)</td>
<td>3.62 (0.91)</td>
<td>3.83 (0.88)</td>
</tr>
<tr>
<td>Competence**</td>
<td>0.87</td>
<td>3.80 (0.84)</td>
<td>3.76 (0.84)</td>
<td>3.27 (0.92)</td>
<td>3.49 (0.92)</td>
</tr>
<tr>
<td>Relatedness*</td>
<td>0.88</td>
<td>4.00 (0.86)</td>
<td>3.98 (0.95)</td>
<td>3.63 (1.02)</td>
<td>3.79 (0.97)</td>
</tr>
<tr>
<td>RAI*</td>
<td>0.73</td>
<td>13.81 (5.05)</td>
<td>14.21 (3.34)</td>
<td>11.23 (5.57)</td>
<td>12.44 (5.25)</td>
</tr>
<tr>
<td>Psychological wellbeing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPD</td>
<td>0.91</td>
<td>19.77 (16.40)</td>
<td>15.09 (14.42)</td>
<td>17.32 (15.18)</td>
<td>17.55 (15.38)</td>
</tr>
<tr>
<td>SWLS</td>
<td>0.86</td>
<td>20.10 (3.31)</td>
<td>19.86 (3.17)</td>
<td>19.18 (3.44)</td>
<td>19.54 (3.37)</td>
</tr>
</tbody>
</table>

*Note. **p < .001 *p < .05 significant exercise context effect.